1,813 research outputs found

    Accumulation layer profiles at InAs polar surfaces

    Get PDF
    High resolution electron energy loss spectroscopy, dielectric theory simulations, and charge profile calculations have been used to study the accumulation layer and surface plasmon excitations at the In-terminated (001)-(4 × 1) and (111)A-(2 × 2) surfaces of InAs. For the (001) surface, the surface state density is 4.0 ± 2.0 × 1011 cm – 2, while for the (111)A surface it is 7.5 ± 2.0 × 1011 cm – 2, these values being independent of the surface preparation procedure, bulk doping level, and substrate temperature. Changes of the bulk Fermi level with temperature and bulk doping level do, however, alter the position of the surface Fermi level. Ion bombardment and annealing of the surface affect the accumulation layer only through changes in the effective bulk doping level and the bulk momentum scattering rate, with no discernible changes in the surface charge density

    Utilising solution processed zirconium acetylacetonate as an electron extracting layer in both regular and inverted small molecule organic photovoltaic cells

    Get PDF
    Interfacial layers are commonly employed in organic photovoltaic (OPV) cells in order to improve device performance. These layers must be transparent, stable, be compatible with the photo-active materials and provide efficient charge extraction with a good energetic match to the relevant organic material. In this report we demonstrate the compatibility of zirconium acetylacetonate (ZrAcac) electron extracting layers in both regular and inverted small molecule OPV cells. When the ZrAcac was processed in both air and under N2, low work function (3.9 and 3.7 eV respectively), highly transparent layers were formed, with good energetic alignment to both C60 and hexachlorinated boron subphthalocyanine chloride (Cl6-SubPc) acceptors. Initial measurements indicate similar stabilities when using the ZrAcac in either device architecture. These results indicate that the ZrAcac layer can be used as a direct replacement for the commonly used bathocuproine (BCP) in small molecule OPV cells

    The formation of high number density InSb quantum dots, resulting from direct InSb/GaSb (001) heteroepitaxy

    Get PDF
    We report the direct deposition of indium antimonide, by molecular beam epitaxy (MBE) on gallium antimonide, resulting in the formation of quantum dots (QDs) with a maximum density of ~5.3×1010 cm−2. Using reflection high energy electron diffraction (RHEED) and atomic force microscopy (AFM) for the analysis of samples with InSb depositions of 1–6 ML equivalent thickness, we observe an apparent value for the critical thickness for InSb/GaSb (001) deposition of 2.3±0.3 ML, for the growth temperatures of 275 °C and 320 °C

    Comparison of dimethyl sulfoxide treated highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) electrodes for use in indium tin oxide-free organic electronic photovoltaic devices

    Get PDF
    Indium tin oxide (ITO)-free organic photovoltaic (OPV) devices were fabricated using highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the transparent conductive electrode (TCE). The intrinsic conductivity of the PEDOT:PSS films was improved by two different dimethyl sulfoxide (DMSO) treatments – (i) DMSO was added directly to the PEDOT:PSS solution (PEDOT:PSSADD) and (ii) a pre-formed PEDOT:PSS film was immersed in DMSO (PEDOT:PSSIMM). X-ray photoelectron spectroscopy (XPS) and conductive atomic force microscopy (CAFM) studies showed a large amount of PSS was removed from the PEDOT:PSSIMM electrode surface. OPV devices based on a poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk hetrojunction showed that the PEDOT:PSSIMM electrode out-performed the PEDOT:PSSADD electrode, primarily due to an increase in short circuit current density from 6.62 mA cm−2 to 7.15 mA cm−2. The results highlight the importance of optimising the treatment of PEDOT:PSS electrodes and demonstrate their potential as an alternative TCE for rapid processing and low-cost OPV and other organic electronic devices

    The c(4×4)–a(1×3) surface reconstruction transition on InSb(001) : static versus dynamic conditions

    Get PDF
    The transition between the a(1 × 3) and c(4 × 4) surface reconstructions of InSb(0 0 1) has been carefully monitored by reflection high energy electron diffraction as a function of temperature and Sb2 flux, without incident In flux. Arrhenius-like behaviour is observed across the whole range of Sb2 fluxes and temperatures, allowing accurate internal calibration of substrate temperature. This behaviour is in contrast to aggregated data obtained under dynamic molecular beam epitaxy conditions, which show two regimes rather than a single Arrhenius-like phase boundary. The results are explained qualitatively by the atomistic kinetics in static versus dynamic conditions

    Ordered growth of vanadyl phthalocyanine (VOPc) on an iron phthalocyanine (FePc) monolayer

    Get PDF
    The growth and characterisation of a non-planar phthalocyanine (Vanadyl Phthalocyanine, VOPc) on a complete monolayer (ML) of a planar phthalocyanine (Iron (II) Phthalocyanine, FePc) on an Au (111) surface, has been investigated using ultra-high vacuum (UHV) scanning tunnelling microscopy (STM) and low energy electron diffraction (LEED). The surface mesh of the initial FePc monolayer has been determined and shown to correspond to an incommensurate overlayer, not commensurate as previously reported. Ordered islands of VOPc, with (1x1) epitaxy, grow on the FePc layer at submonolayer coverages. The individual VOPc molecules occupy sites directly atop the underlying FePc molecules, indicating that significant intermolecular bonding must occur. It is proposed that this interaction implies that the V=O points down into the surface, allowing a Fe-O bond to form. The detailed appearance of the STM images of the VOPc molecules is consistent with previous studies in other VOPc growth studies in which this molecular orientation has been proposed

    Structural templating in a nonplanar phthalocyanine using single crystal copper iodide

    Get PDF
    Solution-grown copper iodide crystals are used as substrates for the templated growth of the nonplanar vanadyl phthalocyanine using organic molecular beam deposition. Structural characterization reveals a single molecular orientation produced by the (111) Miller plane of the copper iodide crystals. These fundamental measurements show the importance of morphology and structure in templating interactions for organic electronics applications

    Two-dimensional core–shell donor–acceptor assemblies at metal–organic interfaces promoted by surface-mediated charge transfer

    Get PDF
    Organic charge transfer (CT) complexes obtained by combining molecular electron donors and acceptors have attracted much interest due to their potential applications in organic opto-electronic devices. In order to work, these systems must have an electronic matching – the highest occupied molecular orbital (HOMO) of the donor must couple with the lowest unoccupied molecular orbital (LUMO) of the acceptor – and a structural matching, so as to allow direct intermolecular CT. Here it is shown that, when molecules are adsorbed on a metal surface, novel molecular organizations driven by surface-mediated CT can appear that have no counterpart in condensed phase non-covalent assemblies of donor and acceptor molecules. By means of scanning tunneling microscopy and spectroscopy it is demonstrated that the electronic and self-assembly properties of an electron acceptor molecule can change dramatically in the presence of an additional molecular species with marked electron donor character, leading to the formation of unprecedented core–shell assemblies. DFT and classical force-field simulations reveal that this is a consequence of charge transfer from the donor to the acceptor molecules mediated by the metallic substrate

    Growth and properties of GaSbBi alloys

    Get PDF
    Molecular-beam epitaxy has been used to grow GaSb 1− x Bi x alloys with x up to 0.05. The Bi content, lattice expansion, and film thickness were determined by Rutherford backscattering and x-ray diffraction, which also indicate high crystallinity and that >98% of the Bi atoms are substitutional. The observed Bi-induced lattice dilation is consistent with density functional theory calculations. Optical absorption measurements and valence band anticrossing modeling indicate that the room temperature band gap varies from 720 meV for GaSb to 540 meV for GaSb 0.95Bi0.05, corresponding to a reduction of 36 meV/%Bi or 210 meV per 0.01 Å change in lattice constant

    High Bi content GaSbBi alloys

    Get PDF
    The epitaxial growth, structural, and optical properties of GaSb 1– x Bi x alloys have been investigated. The Bi incorporation into GaSb is varied in the range 0 < x ≤ 9.6% by varying the growth rate (0.31–1.33 μm h−1) at two growth temperatures (250 and 275 °C). The Bi content is inversely proportional to the growth rate, but with higher Bi contents achieved at 250 than at 275 °C. A maximum Bi content of x = 9.6% is achieved with the Bi greater than 99% substitutional. Extrapolating the linear variation of lattice parameter with Bi content in the GaSbBi films enabled a zinc blende GaBi lattice parameter to be estimated of 6.272 Å. The band gap at 300 K of the GaSbBi epitaxial layers decreases linearly with increasing Bi content down to 410 ± 40 meV (3 μm) for x = 9.6%, corresponding to a reduction of ∼35 meV/%Bi. Photoluminescence indicates a band gap of 490 ± 5 meV at 15 K for x = 9.6%
    • …
    corecore