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a b s t r a c t

We report the direct deposition of indium antimonide, by molecular beam epitaxy (MBE) on gallium
antimonide, resulting in the formation of quantum dots (QDs) with a maximum density of
�5.3�1010 cm�2. Using reflection high energy electron diffraction (RHEED) and atomic force micro-
scopy (AFM) for the analysis of samples with InSb depositions of 1–6 ML equivalent thickness, we
observe an apparent value for the critical thickness for InSb/GaSb (001) deposition of 2.370.3 ML, for
the growth temperatures of 275 1C and 320 1C.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction:

Quantum dots (QDs) have emerged as a prominent area of
research in relation to the development of photoemitters and
infrared detectors [1–4]. The benefits of quantum confinement,
such as a narrow emission line-width and increased differential
gain as a function of carrier density have been reported in the
InAs/GaAs system [5], suggesting that coupling QD morphology
with narrow band gap materials offers promise in the develop-
ment of emitters in the technologically important mid-IR region.

n-type InSb exhibits a narrow band gap and a small electron
effective mass at room temperature [6], making it theoretically
suitable in the development of photonic devices. However, diffi-
culties in substrate lattice matching and compositional consis-
tency of InSb derivatives have previously hindered device
development [7].

Since the emergence of research concerning MBE grown self-
assembled InSb QDs in 1996 [7,8], there has been increasing
interest in relation to optoelectronic and ultrafast device applica-
tions [2,6,9–11]. Thought to exhibit thermally stable emission
characteristics [4], InSb QDs offer the prospect of detector and
laser diode operation [1] in the 3–5 mm region of the electro-
magnetic spectrum, with 3.8 mm emission (300 K) having been
reported previously for MBE-grown InSb QDs on InAs (001) [2].

Formed via Stranski–Krastanov (SK) growth, due to a lattice
mismatch of ca. 6.4% with GaSb, there are similarities between
InSb/GaSb (001) growth and the InAs/GaAs (001) heteroepitaxial
system [12,13], which has been extensively documented [12,14–19].
In the latter, strain-driven QD formation is observed after deposition
of a critical thickness of InAs (�1.6 ML) [12,20–23], after which
accumulated strain energy in the material leads to preferential
formation of islands. There are, however, some important differences,
for example the low bond energy of InSb [24], in which case one
might expect a larger critical thickness than that reported for InAs/
GaAs [4,19,25].

Unlike the InAs/GaAs system, factors such as the increased
diffusion length of indium on Sb-terminated surfaces [4] due to
the lower In-Sb bond energy, and the surfactant properties of Sb
[26,27] have accounted for low QD densities (109 cm�2) [4], with
defect formation serving to reduce the power density/sensitivity
for device applications [28].

In this work, we report the formation of a high number density
of QDs, without the requirement of post-growth annealing or
group V exchange, and the present analysis of the InSb/GaSb
critical thickness.

2. Experimental

Sample growth was conducted in a GEN II MBE system, with a
base pressure o2�10�10 Torr. The system is equipped with
SUMO-type group III sources and a valved cracker (Addon)
supplying an Sb2 flux.
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For each growth, a quarter of an undoped 2” GaSb (001)
wafer was mounted on an indium-free platen. Following
outgassing at 300 1C, the substrates were admitted to the
growth chamber, where the oxide layer was thermally
removed (�550 1C) under a stabilising Sb2 flux (�2�
10�6 Torr). The substrate temperature, Tsub, was determined
by pyrometry. A 100 nm GaSb buffer layer was then grown on
the substrate (0.5 mm h�1, 500 1CoTsubo520 1C), to achieve a
planar surface, after which the substrate temperature was
immediately reduced to the desired growth temperature
(275 1C or 320 1C). The surface was stabilised with an incident
Sb2 flux, until the substrate temperature fell below 370 1C.
Following a period of time to allow thermal equilibration
of the substrate, InSb growth commenced at a rate of 0.17
0.01 MLs�1 and a V:III of �1.2:1. RHEED video was re-
corded in the 110

h i
direction, for analysis, during deposition.

Surface topography was determined by AFM, in tapping mode,
by use of an MFP-3D instrument (Asylum Research), with quanti-
tative topographic analysis undertaken through the Asylum
Research software.

3. Results and discussion

The recorded RHEED patterns (Fig. 1) show the evolution of the
surface, from the 5x surface reconstruction of the GaSb (001)
surface, to a symmetric 3x reconstruction immediately upon the
commencement of InSb deposition. RHEED oscillations were also
observed and recorded during the initial stages of growth and
prior to 3D island formation, confirming the InSb deposition rate.

While InSb is reported to exhibit either an asymmetric (1�3)
or a c(4�4) pattern [29,30] at normal growth temperatures, a
symmetric (1�3) reconstruction would be observed for a growing
GaSb surface and implies a strained InSb layer. A spotted pattern,
after some quantity of InSb deposition, was taken as indicative
that 3D surface features had been formed [31]. This was subse-
quently confirmed by AFM. The lack of chevrons in the spot
pattern is in contrast to RHEED observations on both InAs/GaAs
(001) (quantum dot) [32] and InAs/InP (001) (quantum wire)
growth [33], where chevrons have been observed in each case.
This implies that there are no sufficiently large planar facets to
produce chevron features [34]. After the onset of 3D island
formation, a streaked pattern remained visible, thought to result
from inter-island planar regions.

The spacing between the specular spot and the first order Bragg
spot was also observed to decrease, indicating an increase in the
lateral lattice parameter, consistent with a transition from pseu-
domorphic InSb/GaSb growth to relaxed InSb growth (Fig. 2). This
is consistent with previous observations for InSb/GaSb growth [7],
with the exception that the change was observed here in the
RHEED streaks, rather than the transmission spots.

Using the Asylum Research analysis software, dot parameters
such as diameter, height and density were established by a height
threshold masking method in which a dot perimeter was estab-
lished, permitting topographic and volumetric analyses to be
performed on the x, y and z data therein.

AFM analysis of the grown samples corroborates the observa-
tions derived from examination of RHEED patterns, with 3D features
observed above a critical deposition thickness. AFM topographs
revealed the appearance and evolution of these features, as a
function of InSb deposition (Fig. 3), showing no islands after 2 ML
InSb deposition, then 3D islands appearing in the scan correspond-
ing to 2.5 ML InSb, consistent with RHEED observations, and enlar-
ging with further deposition. From appearance in the 2.5 ML image
until the image of the sample corresponding to 5 ML InSb deposi-
tion, the islands range between 10 and 60 nm equivalent diameter

(d) and are of the order of 2–6 ML (1.3–3.9 nm) in height (h). These
figures provide an aspect ratio (h/d) for the 3D islands within the
range 0.02oh/do0.13, comparable with aspect ratios reported for
InAs/InP [28], InAs/GaAs [14] and InSb/GaSb [4].

For both growth temperatures, 3D island density was observed
to peak rapidly after the critical thickness of InSb had been
deposited. A sharper rise and higher island density was observed
for the samples grown at 275 1C, than for 320 1C, with both growth
temperatures displaying ripening and a degree of island coales-
cence. Correspondingly, a decrease in number density upon
further material deposition was observed (Fig. 4).

Analysis of the dot density as a function of InSb deposition
yielded a peak value of 5.3�1010 cm�2 after deposition of �3 ML
at 275 1C and 3.5�1010 cm�2 after �4 ML InSb at 320 1C. These
values exceed those reported previously for direct MBE
(7�108 cm�2) [1] or MOVPE (�109 cm�2) growth [3] and are
comparable with that observed for InAs/GaAs 3D island density
and in the work of Tasco et al. concerning InSb/GaSb, after
annealing (7�1010 cm�2) [4]. The post-growth annealing stage
in the latter study was designed to improve the density and

Fig. 1. 13 keV RHEED patterns acquired during the deposition of 3.5 ML InSb on
GaSb (001), at 275 1C, and in the [110] azimuth. At zero deposition, the 5-fold
reconstruction of Sb-rich GaSb (001) is visible (a), with a sharp transition to a 3-fold
pattern upon InSb deposition (b). The spotted pattern visible in (c) indicates a
transition from 2D to a surface with 3D features.

Fig. 2. RHEED line scans after (a) o1 ML and (b) 3.5 ML equivalent deposition
thicknesses of InSb, indicating an increase in the lateral lattice spacing.
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physical properties of the QDs [4], although critical thickness and
more detailed analysis were unreported. In this study, there was
no evidence of wire structures preceding the onset of dot forma-
tion, as observed for InAs/InP, possibly due to the lack of anion
exchange [35].

Whilst a critical thickness of �2 ML may be inferred from
Fig. 4, it is more useful to consider the observed total volume of
the 3D islands and the amount of InSb deposited: since, in SK
growth, island formation occurs atop a wetting layer, it is expected
that there should be no islands until after the critical thickness is
reached. This can be written, assuming that the wetting layer
volume remains unchanged, as

Q3D ¼ Qdep–Q2D ð1Þ

where Q3D is the volume observed within islands per square
nanometre, Qdep is the volume of InSb supplied to the surface
per square nanometre and Q2D is the volume contributing to 2D
growth in the wetting layer per square nanometre and is propor-
tional to the deposition thickness of InSb. This allows an extra-
polation to the amount of InSb deposition at which onset of island
growth is observed. A plot of 3D island volume as a function of
nominal deposition thickness permits such an extrapolation
(Fig. 5), with the x-intercepts of the lines at 2.3 ML indicating
the critical thickness of the 2D InSb/GaSb wetting layer.

The obtained value of 2.370.3 ML is similar to that obtained by
Bertru et al. at 380 1C (�2.3 ML) [7] and appears to be unchanged
for the substrate temperatures used here. This apparent tempera-
ture insensitivity is also reported for InAs/GaAs (001) growth,
where the critical thickness was demonstrated to be constant over
a range greater than 100 1C [19], with the previously reported
temperature dependence of InAs/GaAs critical thickness [36] being
attributed instead to indium re-evaporation above 500 1C [19].
Since the temperatures used here are well below those at which
the indium sticking coefficient varies, the consistency of the
critical thickness values determined is unsurprising. It is thought

Fig. 3. 1�1 mm2 AFM scans, demonstrating surface topography after the deposition of an indicated quantity of InSb at 275 1C. The height data range for each image
corresponds to the bar shown.

Fig. 4. A plot of 3D island density as a function of InSb deposition for each growth
temperature.

Fig. 5. A plot of 3D island volume as a function of material deposition.

J.J. Bomphrey et al. / Journal of Crystal Growth 420 (2015) 1–5 3



that the larger value of critical thickness for InSb/GaSb, in
comparison to InAs/GaAs, is due to the larger Sb atom and, in
comparison with InAs, the lower InSb binding energy resulting in a
film better able to accommodate strain during growth [4]. Com-
bined with the amount of bond distortion, this correlates with the
InSb/GaSb (001) critical thickness lying between that of InAs/GaAs
(001) [12] and InAs/InP (001) [35].

While the x-intercepts in Fig. 5 are consistent, the gradients of
the trends for each of the two growth temperatures differ,
indicating that the rate of increase of the volume of material in
the 3D islands as a function of InSb deposition is lower at a growth
temperature of 320 1C, compared with that at 275 1C.

Examination of the evolution of Q2D for each series was
achieved by rearranging Eq. (1), providing a plot of Q2D as a
function of the volume of InSb deposition (Fig. 6) according to

Q2D ¼ Qdep�Q3D ð2Þ

For the samples grown at 275 1C, the deviation from the initial
linearity as dots are formed tends toward a plateau of Q2D with
increasing InSb deposition. This is consistent with further growth
contributing predominantly to the islands and may be justified as
follows: since for QdepoQc, where Qc is the critical volume
deposited per nm2, the Q3D term is equal to zero, giving

Q2D ¼ Qdep ð3Þ

which has a gradient of 1.
For the case of Qdep4Qc, where island growth dominates, (2)

gives

dQ2D

dQdep
¼ 1� dQ3D

dQdep
ð4Þ

Since, after Qc is achieved, the rates of increase of Qdep and Q3D

are the same and, assuming no change in the wetting layer
thickness, Eq. (4) becomes

dQ2D

dQdep
¼ 0 ð5Þ

corresponding to a plateau with respect to increasing InSb
deposition.

While the data from the samples grown at 320 1C do deviate
from the linear trend, they do not plateau within the deposition
quantities probed. This suggests that some indium is unaccounted
for, as the Q2D continues to increase with increasing deposition,
indicative of material that is not considered in the analysis. The
temperature employed here is too low for the onset of In re-
evaporation [7,37], however, requiring another explanation.

Another possibility is group III intermixing at the InSb/GaSb
interface. In such a situation, it is expected the formation of
InxGa1�xSb and accompanying reduction in layer strain, would lead
to a larger critical thickness [36]. However, since intermixing has
been shown to have a strong dependence upon temperature, this
scenario is thought to be unlikely, as there is no observed difference
in the critical thickness for the temperatures studied here.

Completed layers of InSb form the surface from which the dot
dimensions are referenced and so do not contribute to the volume
determined by AFM. Therefore, deposited InSb that completes 2D
growth would not be accounted for. This has previously been
observed for InAs/GaAs (001) [14], and may be explained by a
higher substrate temperature facilitating adatoms deposited on
top of a QD to overcome the energy barriers involved in migrating
away from the island. Additionally, the limitations of AFM as a
technique may not successfully detect incomplete inter-island, 2D
growth of a monolayer in height.

In examination of the evolution of island diameter with respect
to InSb deposition (Fig. 7), there is no discernable evidence of wide
scale coalescence, which would lead to a significant increase in
measured island diameter when the mean island diameter and
mean inter-centroid distance of island bases coincide. Instead, we
suggest that the increase in island diameter is attributable to a
combination of increased material deposition and Ostwald ripen-
ing [38]. In addition, the diameter of the islands was not observed
to vary significantly between growth temperatures (Fig. 7), indi-
cating that it is the difference in the rates of increase of island
height that accounts for the difference in the rate of island volume
increase. The data suggest that the indium previously unaccounted
for participates in 2D growth between islands, completing addi-
tional layers, with 3D growth continuing atop, thus causing the
ongoing increase in Q2D observed for the samples grown at 320 1C.
This is further supported by the observed difference in vertical
island growth rate for the two growth temperatures (Fig. 8),
indicating that the higher growth temperature facilitates greater

Fig. 6. A plot of Q2D as a function of Qdep, indicating a difference in trend between
the series grown at 275 1C versus that which was grown at 320 1C.

Fig. 7. A plot of 3D island circular-equivalent diameter, as a function of InSb
deposition. Fig. 8. A plot of average 3D island height as a function of InSb deposition.
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adatom mobility and favours the formation of shorter islands. This
results in QDs of a lower aspect ratio as InSb deposition continues.

4. Conclusions

We demonstrate that formation of QDs can be achieved by
direct deposition of InSb onto GaSb (001), at a high number
density (5.25�1010 cm�3) without the requirement for post-
growth annealing. A value for the critical thickness of QD forma-
tion for the InSb/GaSb (001) system is found to be 2.370.3 ML.

The apparent discrepancy between the volume of material
deposited and that which was observed for the samples grown
at the elevated temperature is explained by growth between the
islands, forming completed layers.
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