4,750 research outputs found

    Trace gas emissions from savanna fires in northern Australia

    Get PDF
    We present analyses of near‐infrared ground‐based Fourier transform infrared solar absorption spectra recorded from a site in Darwin, Northern Territory, Australia (12.4°S, 130.9°E) from August 2005 to June 2008. Total column amounts of carbon monoxide derived from these spectra show a very clear annual cycle, with evidence of transported pollution from Indonesian fires in 2006. Aerosol optical depth measurements from the same site show a similar annual cycle but without exceptional values in 2006, suggesting significant loss of aerosol loading in the transported and aged smoke. In addition, we report the first ever measurements by remote sensing solar Fourier transform infrared of emission ratios with respect to carbon monoxide for formaldehyde (0.022 ± 0.007), acetylene (0.0024 ± 0.0003), ethane (0.0020 ± 0.0003), and hydrogen cyanide (0.0018 ± 0.0003) from Australian savanna fires. These are derived from mid‐infrared spectra recorded through smoke plumes over Darwin on 20 separate days. The only previous measurements of emission ratios for formaldehyde and hydrogen cyanide from Australian savanna fires involved cryogenic trapping and storage of samples that were gathered in very fresh smoke. The results reported here are nearly an order of magnitude higher (but in agreement with laboratory studies), suggesting losses in the collection, storage, or transfer of the gases in the earlier measurements and/or chemical production of these reactive gases within the smoke plumes. Emission ratios for acetylene and ethane from this work are in broad agreement with other literature values

    New Formulation of Paraquat: A Step Forward but in the Wrong Direction?

    Get PDF
    The author discusses whether the new paraquat formulation introduced in Sri Lanka is a step forward in reducing deaths from paraquat self-poisoning

    Rapid Assessment of Southern Pine Decayed by G. Trabeum by Near Infrared Spectra Collected from the Radial Surface

    Get PDF
    The use of near infrared (NIR) spectroscopy for predicting levels of degradation in southern pine (Pinus spp.) by Gloeophyllum trabeum for periods over 1-8 da was investigated. NIR spectra collected from the center of the radial face of each sample after laboratory soil block decay tests were used to develop calibrations. Calibrations were developed for mass loss, compression strength, and exposure period using data measured from prior methods and untreated and mathematically treated (multiplicative scatter correction and first and second derivative) NIR spectra from various ranges of wavelengths by partial least squares regression. Strong relationships were derived from the calibrations with the strongest R2 values of 0.97 (exposure period), 0.94 (compression strength), and 0.91 (mass loss). Calibrations for exposure period showed the strongest statistics for predicting wood decay of the validation test set (R2 = 0.92; RPDp [ratio of the standard deviation of the measured data to the standard error of prediction] = 3.95 [first derivative, 1100-2250 nm]), while predictions for mass loss of the decayed samples resulted in R2 = 0.86 and an RPDp = 3.17 (multiplicative scatter correction, 1100-2500 nm), and the strongest compression strength prediction resulted in R2 = 0.76 and an RPDp = 2.50 (second derivative, 1100-2500 nm). These results suggest that NIR spectroscopy can adequately predict wood decay from spectra collected from the radial face of southern pine

    Making Sense of a New Transport System: An Ethnographic Study of the Cambridgeshire Guided Busway

    Get PDF
    An increase in public transport use has the potential to contribute to improving population health, and there is growing interest in innovative public transport systems. Yet how new public transport infrastructure is experienced and integrated (or not) into daily practice is little understood. We investigated how the Cambridgeshire Guided Busway, UK, was used and experienced in the weeks following its opening, using the method of participant observation (travelling on the busway and observing and talking to passengers) and drawing on Normalization Process Theory to interpret our data. Using excerpts of field notes to support our interpretations, we describe how the ease with which the new transport system could be integrated into existing daily routines was important in determining whether individuals would continue to use it. It emerged that there were two groups of passengers with different experiences and attitudes. Passengers who had previously travelled frequently on regular bus services did not perceive the new system to be an improvement; consequently, they were frustrated that it was differentiated from and not coherent with the regular system. In contrast, passengers who had previously travelled almost exclusively by car appraised the busway positively and perceived it to be a novel and superior form of travel. Our rich qualitative account highlights the varied and creative ways in which people learn to use new public transport and integrate it into their everyday lives. This has consequences for the introduction and promotion of future transport innovations. It is important to emphasise the novelty of new public transport, but also the ways in which its use can become ordinary and routine. Addressing these issues could help to promote uptake of other public transport interventions, which may contribute to increasing physical activity and improving population health. © 2013 Jones et al

    Integrating Web-based Visualization with Structural System Understanding to Improve the Technical Education of Architects

    Get PDF
    The relationship between structure and form has become an important topic of educational research in architecture. The new trend in architecture is to create elegant and efficient designs that are adequately responsive to environmental conditions such as various applied loads. This has created a challenge in architectural education to train architects who are aware of the relationships between structure and form. This paper provides the results of a collaborative effort among the schools of Architecture and Design, Computer Science, and Education at Virginia Tech to develop a web-based learning tool called Structure and Form Analysis System” (SAFAS). SAFAS consists of a “Knowledgebase” and a “Structure and Form Experimentation” module, both of which were used in an undergraduate structures course as supplemental learning materials. Evaluation of the results of several assignments given to students demonstrated that the developed educational materials were effective in helping students (a) gain a better understanding of spatial structures and (b) comprehend the relationships between structure and form. From this study, it is concluded that the SAFAS and the associated educational tools could be used in undergraduate architecture and structures courses to foster a better understanding of various structural concepts

    Strong trait correlation and phylogenetic signal in North American ground beetle (Carabidae) morphology

    Get PDF
    Functional traits mediate species’ responses to, and roles within, their environment and are constrained by evolutionary history. While we have a strong understanding of trait evolution for macrotaxa such as birds and mammals, our understanding of invertebrates is comparatively limited. Here, we address this gap in North American beetles with a sample of ground beetles (Carabidae), leveraging a large-scale collection and digitization effort by the National Ecological Observatory Network (NEON). For 154 ground beetle species, we measured seven morphological traits, which we placed into a recently developed effect–response framework that characterizes traits by how they predict species’ effects on their ecosystems or responses to environmental stressors. We then used cytochrome oxidase 1 sequences from the same specimens to generate a phylogeny and tested the evolutionary tempo and mode of the traits. We found strong phylogenetic signal in, and correlations among, ground beetle morphological traits. These results indicate that, for these species, beetle body shape trait evolution is constrained, and phylogenetic inertia is a stronger driver of beetle traits than (recent) environmental responses. Strong correlations among effect and response traits suggest that future environmental drivers are likely to affect both ecological composition and functioning in these beetles

    Adding a Brane to the Brane-Anti-Brane Action in BSFT

    Full text link
    We attempt to generalize the effective action for the D-brane-anti-D-brane system obtained from boundary superstring field theory (BSFT) by adding an extra D-brane to it to obtain a covariantized action for 2 D-branes and 1 anti-D-brane. We discuss the approximations made to obtain the effective action in closed form. Among other properties, this effective action admits solitonic solutions of codimension 2 (vortices) when one of the D-brane is far separated from the brane-anti-brane pair.Comment: 23 pages, 2 figures, minor revision

    Summary of the workshop on methodologies for environmental public health tracking of air pollution effects

    Get PDF
    The US Centers for Disease Control and Prevention established the Environmental Public Health Tracking (EPHT) program to support state and local projects that characterize the impact of the environment on health. The projects involve compiling, linking, analyzing, and disseminating environmental and health surveillance information, thereby engaging stakeholders and guiding actions to improve public health. One of the EPHT objectives is to track the public health impact of ambient air pollution with analyses that are timely and relevant to state and local stakeholders. To address methodological issues relevant to this objective, in January 2008, government officials and researchers from the USA, Canada, and Europe gathered in Baltimore, Maryland for a 2-day workshop. Using commissioned papers and presentations on key methodological issues as well as examples of previous air pollution impact assessments, work group discussions produced a set of consensus recommendations for the EPHT program. These recommendations noted the need for data that will encourage local stakeholders to support continued progress in air pollution control. The limitations of using only local data for analyses were also noted. To improve local estimates of air pollution health impacts, methods were recommended that “borrow strength” from other evidence. An incremental approach to implementing such methods was recommended. The importance and difficulty of communicating uncertainties in local health impact assessments was emphasized, as was the need for coordination among different agencies conducting health impact assessments
    • 

    corecore