8 research outputs found
Quantifying interspecific variation in dispersal ability of noctuid moths using an advanced tethered flight technique
This is the final version. Available on open access from Wiley via the DOI in this recordDispersal plays a crucial role in many aspects of species' life histories, yet is often difficult to measure directly. This is particularly true for many insects, especially nocturnal species (e.g. moths) that cannot be easily observed under natural field conditions. Consequently, over the past five decades, laboratory tethered flight techniques have been developed as a means of measuring insect flight duration and speed. However, these previous designs have tended to focus on single species (typically migrant pests), and here we describe an improved apparatus that allows the study of flight ability in a wide range of insect body sizes and types. Obtaining dispersal information from a range of species is crucial for understanding insect population dynamics and range shifts. Our new laboratory tethered flight apparatus automatically records flight duration, speed, and distance of individual insects. The rotational tethered flight mill has very low friction and the arm to which flying insects are attached is extremely lightweight while remaining rigid and strong, permitting both small and large insects to be studied. The apparatus is compact and thus allows many individuals to be studied simultaneously under controlled laboratory conditions. We demonstrate the performance of the apparatus by using the mills to assess the flight capability of 24 species of British noctuid moths, ranging in size from 12-27 mm forewing length (~40-660 mg body mass). We validate the new technique by comparing our tethered flight data with existing information on dispersal ability of noctuids from the published literature and expert opinion. Values for tethered flight variables were in agreement with existing knowledge of dispersal ability in these species, supporting the use of this method to quantify dispersal in insects. Importantly, this new technology opens up the potential to investigate genetic and environmental factors affecting insect dispersal among a wide range of species.Rothamsted Research receives grant aided support from the Biotechnology and Biological Sciences Research Council. H.B.C.J. was funded by a BBSRC Quota studentship awarded to J.W.C. and J.K.H
Evidence for a pervasive 'idling-mode' activity template in flying and pedestrian insects
This is the final version. Available on open access from the Royal Society via the DOI in this recordUnderstanding the complex movement patterns of animals in natural environments is a key objective of 'movement ecology'. Complexity results from behavioural responses to external stimuli but can also arise spontaneously in their absence. Drawing on theoretical arguments about decision-making circuitry, we predict that the spontaneous patterns will be scale-free and universal, being independent of taxon and mode of locomotion. To test this hypothesis, we examined the activity patterns of the European honeybee, and multiple species of noctuid moth, tethered to flight mills and exposed to minimal external cues. We also reanalysed pre-existing data for Drosophila flies walking in featureless environments. Across these species, we found evidence of common scale-invariant properties in their movement patterns; pause and movement durations were typically power law distributed over a range of scales and characterized by exponents close to 3/2. Our analyses are suggestive of the presence of a pervasive scale-invariant template for locomotion which, when acted on by environmental cues, produces the movements with characteristic scales observed in nature. Our results indicate that scale-finite complexity as embodied, for instance, in correlated random walk models, may be the result of environmental cues overriding innate behaviour, and that scale-free movements may be intrinsic and not limited to 'blind' foragers as previously thought.Rothamsted research receives grant aided support from the Biotechnology and Biological Sciences Research
Council. S.W. was funded jointly by a grant from BBSRC, Defra, NERC, the Scottish Government and the Wellcome
Trust, under the Insect Pollinators Initiative (grant nos. BB/I00097/1). A.J.P. was funded by a BBSRC Doctoral Training
Partnership in Food Security awarded to K.W. and J.W.C. H.B.C.J. was funded by a BBSRC Quota studentship
awarded to J.W.C. and J.K.
Quantifying interspecific variation in dispersal ability of noctuid moths using an advanced tethered flight technique
This is the final version. Available on open access from Wiley via the DOI in this recordDispersal plays a crucial role in many aspects of species' life histories, yet is often difficult to measure directly. This is particularly true for many insects, especially nocturnal species (e.g. moths) that cannot be easily observed under natural field conditions. Consequently, over the past five decades, laboratory tethered flight techniques have been developed as a means of measuring insect flight duration and speed. However, these previous designs have tended to focus on single species (typically migrant pests), and here we describe an improved apparatus that allows the study of flight ability in a wide range of insect body sizes and types. Obtaining dispersal information from a range of species is crucial for understanding insect population dynamics and range shifts. Our new laboratory tethered flight apparatus automatically records flight duration, speed, and distance of individual insects. The rotational tethered flight mill has very low friction and the arm to which flying insects are attached is extremely lightweight while remaining rigid and strong, permitting both small and large insects to be studied. The apparatus is compact and thus allows many individuals to be studied simultaneously under controlled laboratory conditions. We demonstrate the performance of the apparatus by using the mills to assess the flight capability of 24 species of British noctuid moths, ranging in size from 12-27 mm forewing length (~40-660 mg body mass). We validate the new technique by comparing our tethered flight data with existing information on dispersal ability of noctuids from the published literature and expert opinion. Values for tethered flight variables were in agreement with existing knowledge of dispersal ability in these species, supporting the use of this method to quantify dispersal in insects. Importantly, this new technology opens up the potential to investigate genetic and environmental factors affecting insect dispersal among a wide range of species.Rothamsted Research receives grant aided support from the Biotechnology and Biological Sciences Research Council. H.B.C.J. was funded by a BBSRC Quota studentship awarded to J.W.C. and J.K.H