6,594 research outputs found
The changing patterns of group politics in Britain
Two interpretations of ways in which group politics in Britain have presented challenges to democracy are reviewed: neo-corporatism or pluralistic stagnation and the rise of single issue interest groups. The disappearance of the first paradigm created a political space for the second to emerge. A three-phase model of group activity is developed: a phase centred around production interests, followed by the development of broadly based 'other regarding' groups, succeeded by fragmented, inner directed groups focusing on particular interests. Explanations of the decay of corporatism are reviewed. Single issue group activity has increased as party membership has declined and is facilitated by changes in traditional media and the development of the internet. Such groups can overload the policy-making process and frustrate depoliticisation. Debates about the constitution and governance have largely ignored these issues and there is need for a debate
Application of Confocal Laser Scanning Microscopy to Cytocompatibility Testing of Potential Orthopaedic Materials in Immortalised Osteoblast-Like Cell Lines
Confocal laser scanning microscopy (CLSM) was used in conjunction with in vitro cell culture to investigate cellular interactions with orthopaedic biomaterials. Transfected rat and human osteoblasts were seeded on two potential isoelastic hip prosthesis materials, carbon fibre reinforced polyetheretherketone (PEEK) and epoxy. Titanium 318 alloy was employed as a control. Determination of the material surface contour, an important factor influencing cellular adhesion, proliferation and function, was performed using the industry standard TalysurfÂź and compared to analogous results obtained using the CLSM. The latter technique consistently gave higher values of material roughness but offers the advantage that it can be used to correlate roughness with cell distribution on the same samples, whereas TalysurfÂź measurement of roughness requires clean rigid samples. Image analysis and processing, performed on cells after attachment and culture on the materials for 48 hours, provided cell morphology data. Cells cultured on titanium were larger, with a higher percentage of cytoplasm, than those grown on either of the other materials. The macroscopic surface of epoxy resulted in smaller cells with altered morphology, which orientated themselves along carbon fibres. In conclusion, we believe CLSM offers great potential for investigating the cellular interactions of biomaterials involving minimal sample preparation, non-invasive optical sectioning of samples and minimal opportunity for generation of cellular deformation and sample preparation artefacts
Oral Transmission of Listeria Monocytogenes in Mice via Ingestion of Contaminated Food
L. monocytogenes are facultative intracellular bacterial pathogens that cause food borne infections in humans. Very little is known about the gastrointestinal phase of listeriosis due to the lack of a small animal model that closely mimics human disease. This paper describes a novel mouse model for oral transmission of L. monocytogenes. Using this model, mice fed L. monocytogenes-contaminated bread have a discrete phase of gastrointestinal infection, followed by varying degrees of systemic spread in susceptible (BALB/c/By/J) or resistant (C57BL/6) mouse strains. During the later stages of the infection, dissemination to the gall bladder and brain is observed. The food borne model of listeriosis is highly reproducible, does not require specialized skills, and can be used with a wide variety of bacterial isolates and laboratory mouse strains. As such, it is the ideal model to study both virulence strategies used by L. monocytogenes to promote intestinal colonization, as well as the host response to invasive food borne bacterial infection
Sequence analysis of an Archaeal virus isolated from a hypersaline lake in Inner Mongolia, China
<p>Abstract</p> <p>Background</p> <p>We are profoundly ignorant about the diversity of viruses that infect the domain <it>Archaea</it>. Less than 100 have been identified and described and very few of these have had their genomic sequences determined. Here we report the genomic sequence of a previously undescribed archaeal virus.</p> <p>Results</p> <p>Haloarchaeal strains with 16S rRNA gene sequences 98% identical to <it>Halorubrum saccharovorum </it>were isolated from a hypersaline lake in Inner Mongolia. Two lytic viruses infecting these were isolated from the lake water. The BJ1 virus is described in this paper. It has an icosahedral head and tail morphology and most likely a linear double stranded DNA genome exhibiting terminal redundancy. Its genome sequence has 42,271 base pairs with a GC content of ~65 mol%. The genome of BJ1 is predicted to encode 70 ORFs, including one for a tRNA. Fifty of the seventy ORFs had no identity to data base entries; twenty showed sequence identity matches to archaeal viruses and to haloarchaea. ORFs possibly coding for an origin of replication complex, integrase, helicase and structural capsid proteins were identified. Evidence for viral integration was obtained.</p> <p>Conclusion</p> <p>The virus described here has a very low sequence identity to any previously described virus. Fifty of the seventy ORFs could not be annotated in any way based on amino acid identities with sequences already present in the databases. Determining functions for ORFs such as these is probably easier using a simple virus as a model system.</p
Complete quantum teleportation using nuclear magnetic resonance
Quantum mechanics provides spectacular new information processing abilities
(Bennett 1995, Preskill 1998). One of the most unexpected is a procedure called
quantum teleportation (Bennett et al 1993) that allows the quantum state of a
system to be transported from one location to another, without moving through
the intervening space. Partial implementations of teleportation (Bouwmeester et
al 1997, Boschi et al 1998) over macroscopic distances have been achieved using
optical systems, but omit the final stage of the teleportation procedure. Here
we report an experimental implementation of the full quantum teleportation
operation over inter-atomic distances using liquid state nuclear magnetic
resonance (NMR). The inclusion of the final stage enables for the first time a
teleportation implementation which may be used as a subroutine in larger
quantum computations, or for quantum communication. Our experiment also
demonstrates the use of quantum process tomography, a procedure to completely
characterize the dynamics of a quantum system. Finally, we demonstrate a
controlled exploitation of decoherence as a tool to assist in the performance
of an experiment.Comment: 15 pages, 2 figures. Minor differences between this and the published
versio
Missed opportunities for tuberculosis prevention among patients accessing a UK HIV service.
United Kingdom guidelines recommend screening for and treatment of latent tuberculosis infection (LTBI) in HIV-positive patients at high risk of active tuberculosis (TB) disease, but implementation is suboptimal. We investigated potential missed opportunities to identify and treat LTBI among HIV-positive patients accessing a large HIV outpatient service in London. Case records of all adult patients attending our service for HIV care diagnosed with active TB between 2011 and 2015 were reviewed to determine whether they met criteria for LTBI screening and whether screening was undertaken. Twenty-five patients were treated for TB. Of 15 (60%) patients who started TB treatment â„6 months after HIV diagnosis, 14 (93%) met UK guideline-recommended criteria for LTBI screening and treatment; only one (7%) had been screened for LTBI. Eight of these 15 (53%) patients had additional risk factors for TB which are not reflected in current UK guidelines. Of 15 patients treated for TB â„6 months after diagnosis of HIV, 14 (93%) had not been screened for LTBI, suggesting missed opportunities for TB prevention. People living with HIV may benefit from a broader approach to LTBI screening which takes into account additional recognised TB risk factors and ongoing TB exposure
An investigation of eddy-current damping of multi-stage pendulum suspensions for use in interferometric gravitational wave detectors
In this article we discuss theoretical and experimental investigations of the use of eddy-current damping for multi-stage pendulum suspensions such as those intended for use in Advanced LIGO, the proposed upgrade to LIGO (the US laser interferometric gravitational-wave observatory). The design of these suspensions is based on the triple pendulum suspension design developed for GEO 600, the German/UK interferometric gravitational wave detector, currently being commissioned. In that detector all the low frequency resonant modes of the triple pendulums are damped by control systems using collocated sensing and feedback at the highest mass of each pendulum, so that significant attenuation of noise associated with this so-called local control is achieved at the test masses. To achieve the more stringent noise levels planned for Advanced LIGO, the GEO 600 local control design needs some modification. Here we address one particular approach, namely that of using eddy-current damping as a replacement or supplement to active damping for some or all of the modes of the pendulums. We show that eddy-current damping is indeed a practical alternative to the development of very low noise sensors for active damping of triple pendulums, and may also have application to the heavier quadruple pendulums at a reduced level of damping
InlA promotes dissemination of Listeria monocytogenes to the mesenteric lymph nodes during food borne infection of mice
Intestinal Listeria monocytogenes infection is not efficient in mice and this has been attributed to a low affinity interaction between the bacterial surface protein InlA and E-cadherin on murine intestinal epithelial cells. Previous studies using either transgenic mice expressing human E-cadherin or mouse-adapted L. monocytogenes expressing a modified InlA protein (InlA(m)) with high affinity for murine E-cadherin showed increased efficiency of intragastric infection. However, the large inocula used in these studies disseminated to the spleen and liver rapidly, resulting in a lethal systemic infection that made it difficult to define the natural course of intestinal infection. We describe here a novel mouse model of oral listeriosis that closely mimics all phases of human disease: (1) ingestion of contaminated food, (2) a distinct period of time during which L. monocytogenes colonize only the intestines, (3) varying degrees of systemic spread in susceptible vs. resistant mice, and (4) late stage spread to the brain. Using this natural feeding model, we showed that the type of food, the time of day when feeding occurred, and mouse gender each affected susceptibility to L. monocytogenes infection. Co-infection studies using L. monocytogenes strains that expressed either a high affinity ligand for E-cadherin (InlA(m)), a low affinity ligand (wild type InlA from Lm EGDe), or no InlA (ÎinlA) showed that InlA was not required to establish intestinal infection in mice. However, expression of InlA(m) significantly increased bacterial persistence in the underlying lamina propria and greatly enhanced dissemination to the mesenteric lymph nodes. Thus, these studies revealed a previously uncharacterized role for InlA in facilitating systemic spread via the lymphatic system after invasion of the gut mucosa
Invited Article: CO_2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions
In 2000 the first mirror suspensions to use a quasi-monolithic final stage were installed at the GEO600 detector site outside Hannover, pioneering the use of fused silica suspension fibers in long baseline interferometric detectors to reduce suspension thermal noise. Since that time, development of the production methods of fused silica fibers has continued. We present here a review of a novel CO_2 laser-based fiber pulling machine developed for the production of fused silica suspensions for the next generation of interferometric gravitational wave detectors and for use in experiments requiring low thermal noise suspensions. We discuss tolerances, strengths, and thermal noise performance requirements for the next generation of gravitational wave detectors. Measurements made on fibers produced using this machine show a 0.8% variation in vertical stiffness and 0.05% tolerance on length, with average strengths exceeding 4 GPa, and mechanical dissipation which meets the requirements for Advanced LIGO thermal noise performance
- âŠ