126,951 research outputs found

    Single stage experimental evaluation of slotted rotor and stator blading. Part I - Analysis and design

    Get PDF
    Analysis and design of slotted rotor and stator blading for application to compressors in advanced airbreathing propulsion system

    A Study for a Tracking Trigger at First Level for CMS at SLHC

    Full text link
    It is expected that the LHC accelerator and experiments will undergo a luminosity upgrade which will commence after several years of running. This part of the LHC operations is referred to as Super-LHC (SLHC) and is expected to provide beams of an order of magnitude larger luminosity (1035cm-2sec-1) than the current design. Preliminary results are presented from a feasibility study for a First Level Tracking Trigger for CMS at the SLHC using the data of the inner tracking detector. As a model for these studies the current CMS pixel detector with the same pixel size and radial distances from the beam has been used. Monte Carlo studies have been performed using the full CMS simulation package (OSCAR) and the occupancy of such a detector at SLHC beam conditions has been calculated. The design of an electron trigger which uses both the calorimeter energy depositions and the pixel data to identify isolated electrons and photons has been investigated. Results on the tracker occupancy and the electron trigger performance are presentedComment: Presented at LECC, Heidelberg 200

    The Propagation and Survival of Interstellar Grains

    Get PDF
    In this paper we discuss the propagation of dust through the interstellar medium (ISM), and describe the destructive effects of stellar winds, jets, and supernova shock waves on interstellar dust. We review the probability that grains formed in stellar outflows or supernovae survive processing in and propagation through the ISM, and incorporate themselves relatively unprocessed into meteoritic bodies in the solar system. We show that very large (radii >= 5 micron) and very small grains (radii <= 100 Angstrom) with sizes similar to the pre-solar SiC and diamond grains extracted from meteorites, can survive the passage through 100\kms shock waves relatively unscathed. High velocity (>= 250 km/s) shocks destroy dust efficiently. However, a small (~10%) fraction of the stardust never encountered such fast shocks before incorporation into the solar system. All grains should therefore retain traces of their passage through interstellar shocks during their propagation through the ISM. The grain surfaces should show evidence of processing due to sputtering and pitting due to small grain cratering collisions on the micron-sized grains. This conclusion seems to be in conflict with the evidence from the large grains recovered from meteorites which seem to show little interstellar processing.Comment: 19 pages, 5 figures (.eps), LaTeX, to appear in "Astrophysical Implications of the Laboratory Study of Presolar Materials" AIP Conference Proceedings, 1997 T.J. Bernatowicz and E. Zinner (eds.

    Charge and spin state readout of a double quantum dot coupled to a resonator

    Full text link
    State readout is a key requirement for a quantum computer. For semiconductor-based qubit devices it is usually accomplished using a separate mesoscopic electrometer. Here we demonstrate a simple detection scheme in which a radio-frequency resonant circuit coupled to a semiconductor double quantum dot is used to probe its charge and spin states. These results demonstrate a new non-invasive technique for measuring charge and spin states in quantum dot systems without requiring a separate mesoscopic detector
    corecore