14 research outputs found

    β-Lactam antibiotics and vancomycin inhibit the growth of planktonic and biofilm Candida spp.: An additional benefit of antibiotic-lock therapy?

    Get PDF
    AbstractThe aim of this study was to evaluate the effects of cefepime, meropenem, piperacillin/tazobactam (TZP) and vancomycin on strains of Candida albicans and Candida tropicalis in planktonic and biofilm forms. Twenty azole-derivative-resistant strains of C. albicans (n=10) and C. tropicalis (n=10) were tested. The susceptibility of planktonic Candida spp. to the antibacterial agents was investigated by broth microdilution. The XTT reduction assay was performed to evaluate the viability of growing and mature biofilms following exposure to these drugs. Minimum inhibitory concentrations (MICs) ranged from 0.5mg/mL to 2mg/mL for cefepime, TZP and vancomycin and from 0.5mg/mL to 1mg/mL for meropenem and the drugs also caused statistically significant reductions in biofilm cellular activity both in growing and mature biofilm. Since all of the tested drugs are commonly used in patients with hospital-acquired infections and in those with catheter-related infections under antibiotic-lock therapy, it may be possible to obtain an additional benefit from antibiotic-lock therapy with these drugs, namely the control of Candida biofilm formation

    Spectral Method for Localization of Multiple Partial Discharges in Dielectric Insulation of Hydro-Generator Coils: Simulation and Experimental Results

    No full text
    Abstract A methodology based on spectral analysis for localization of multiple partial discharges in dielectric region of hydro-generator coils is proposed. This pinpointing of multiple discharges aims to provide means for performing diagnosis of insulating regions of the coil. A numerical model of the structure was developed by using the finite-difference time-domain method (FDTD-3D) to solve Maxwell’s equations. Transient voltage associated with partial discharges that occurs at different positions of the coil is calculated at specific point and its spectrum is used to perform the diagnosis. In 90% of simulations, accurate estimates of simultaneous discharges location were obtained. Physical phenomena allowing the development of the methodology are assessed numerically and experimentally. Finally, a localized artificial PD injection schema is proposed and used for validating our numerical results and physical analysis

    Analysis and Comparison of Sensors for Measurements of Partial Discharges in Hydrogenerator Stator Windings

    No full text
    Abstract In order to measure electrical signals produced by partial discharges in hydrogenerators stator windings, capacitive couplers are regularly used. They are electrically connected to the windings and therefore, require undesired insulation intrusion. For avoiding such an intrusion, a microstrip directional coupler is used, which is experimentally and numerically investigated in this work. This electromagnetic field sensor is analyzed initially via computer simulation using the finite-difference time-domain method. This numerical analysis is fulfilled considering the coupler placed over a stator bar. Experimental high-voltage tests with generator windings were also performed. We compare the results of the measurements obtained by using various sensors and show that the microstrip directional coupler has some important advantages over traditional capacitive sensors such as complete conductive insulation from the windings and the capacity of detecting shorter PD pulses due to their wider bandwidth
    corecore