43 research outputs found

    Splenectomy for Splenic Abscess

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140209/1/sur.2012.073.pd

    Adult cardiac surgery during the COVID-19 Pandemic: A Tiered Patient Triage Guidance Statement

    Get PDF
    In the setting of the current novel coronavirus pandemic, this document has been generated to provide guiding statements for the adult cardiac surgeon to consider in a rapidly evolving national landscape. Acknowledging the risk for a potentially prolonged need for cardiac surgery procedure deferral, the authors have created this proposed template for physicians and interdisciplinary teams to consider in protecting their patients, institution and their highly specialized cardiac surgery team. In addition, recommendations on the transition from traditional in-person patient assessments and outpatient follow-up are provided. Lastly, we advocate that the cardiac surgeon must continue to serve as leaders, experts, and relevant members of our medical community, shifting our role as necessary in this time of need

    Ramping up Delivery of Cardiac Surgery During the COVID-19 Pandemic: A Guidance Statement from The Society of Thoracic Surgeons COVID-19 Task Force

    Get PDF
    The COVID-19 pandemic has had a profound global impact. Its rapid transmissibility has transformed healthcare delivery and forced countries to adopt strict measures to contain its spread. The vast majority of U.S. cardiac surgical programs have deferred all but truly emergent/urgent operative procedures in an effort to reduce the burden on the healthcare system and to mobilize resources to combat the pandemic surge. While the number of COVID-19 cases continues to increase worldwide, the incidence of new cases has begun to decline in many North American cities. This flattening of the curve has prompted interest in re-opening the economy, relaxing public health restrictions, and resuming non-urgent health care delivery

    Comparison of Evaluations for Heart Transplant Before Durable Left Ventricular Assist Device and Subsequent Receipt of Transplant at Transplant vs Nontransplant Centers

    Get PDF
    IMPORTANCE: In 2020, the Centers for Medicare & Medicaid Services revised its national coverage determination, removing the requirement to obtain review from a Medicare-approved heart transplant center to implant a durable left ventricular assist device (LVAD) for bridge-to-transplant (BTT) intent at an LVAD-only center. The association between center-level transplant availability and access to heart transplant, the gold-standard therapy for advanced heart failure (HF), is unknown. OBJECTIVE: To investigate the association of center transplant availability with LVAD implant strategies and subsequent heart transplant following LVAD implant before the Centers for Medicare & Medicaid Services policy change. DESIGN, SETTING, AND PARTICIPANTS: A retrospective cohort study of the Society of Thoracic Surgeons Intermacs multicenter US registry database was conducted from April 1, 2012, to June 30, 2020. The population included patients with HF receiving a primary durable LVAD. EXPOSURES: LVAD center transplant availability (LVAD/transplant vs LVAD only). MAIN OUTCOMES AND MEASURES: The primary outcomes were implant strategy as BTT and subsequent transplant by 2 years. Covariates that might affect listing strategy and outcomes were included (eg, patient demographic characteristics, comorbidities) in multivariable models. Parameters for BTT listing were estimated using logistic regression with center-level random effects and for receipt of a transplant using a Cox proportional hazards regression model with death as a competing event. RESULTS: The sample included 22 221 LVAD recipients with a median age of 59.0 (IQR, 50.0-67.0) years, of whom 17 420 (78.4%) were male and 3156 (14.2%) received implants at LVAD-only centers. Receiving an LVAD at an LVAD/transplant center was associated with a 79% increased adjusted odds of BTT LVAD designation (odds ratio, 1.79; 95% CI, 1.35-2.38; P \u3c .001). The 2-year transplant rate following LVAD implant was 25.6% at LVAD/transplant centers and 11.9% at LVAD-only centers. There was an associated 33% increased rate of transplant at LVAD/transplant centers compared with LVAD-only centers (adjusted hazard ratio, 1.33; 95% CI, 1.17-1.51) with a similar hazard for death at 2 years (adjusted hazard ratio, 0.99; 95% CI, 0.90-1.08). CONCLUSIONS AND RELEVANCE: Receiving an LVAD at an LVAD-transplant center was associated with increased odds of BTT intent at implant and subsequent transplant receipt for patients at 2 years. The findings of this study suggest that Centers for Medicare & Medicaid Services policy change may have the unintended consequence of further increasing inequities in access to transplant among patients at LVAD-only centers

    Right ventricular failure following left ventricular assist device implantation is associated with a preoperative pro-inflammatory response

    No full text
    Abstract Background Systemic inflammation during implant of a durable left ventricular assist device (LVAD) may contribute to adverse outcomes. We investigated the association of the preoperative inflammatory markers with subsequent right ventricular failure (RVF). Materials and methods Prospective data was collected on 489 patients from 2003 through 2017 who underwent implantation of a durable LVAD. Uni- and multivariable correlation with leukocytosis was determined using linear and binary logistic regression. The population was also separated into low ( 10.5 K/ul, n = 127) white blood cell count (WBC) groups. Mantel-Cox statistics was used to analyze survival data. Results Postop RVF was associated with a higher preop WBC (11.3 + 5.7 vs 8.7 + 3.1) and C-reactive protein (CRP, 5.6 + 4.4 vs 3.3 + 4.7) levels. Multivariable analysis identified an independent association between increased WBC preoperatively with increased lactate dehydrogenase (LDH, P < 0.001), heart rate (P < 0.001), CRP (P = 0.006), creatinine (P = 0.048), and INR (P = 0.049). The high WBC group was more likely to be on preoperative temporary circulatory support (17.3% vs 6.4%, P < 0.001) with a trend towards greater use of an intra-aortic balloon pump (55.9% vs 47.2%, P = 0.093). The high WBC group had poorer mid-term survival (P = 0.042). Conclusions Postop RVF is associated with a preoperative pro-inflammatory environment. This may be secondary to the increased systemic stress of decompensated heart failure. Systemic inflammation in the decompensated heart failure may contribute to RVF after LVAD implant

    Use of venovenous extracorporeal membrane oxygenation and an atrial septostomy for pulmonary and right ventricular failure.

    No full text
    BACKGROUND: Right ventricular failure is a major contributor to morbidity and mortality on the lung transplant waiting list. This study was designed to evaluate the effectiveness of an atrial septostomy with venovenous extracorporeal membrane oxygenation (VV-ECMO) as a novel potential bridge to transplantation. METHODS: Adult sheep (58±3 kg; n=12) underwent a clamshell thoracotomy and instrumentation to measure all relevant pressures and cardiac output (CO). Sheep with tricuspid insufficiency (TI [n=5]) and without tricuspid insufficiency (ØTI [n=7]) were examined. After creation of a 1-cm atrial septal defect and initiating VV-ECMO, the pulmonary artery (PA) was banded to allow progressive reduction of pulmonary blood flow, and data were collected. RESULTS: The CO in both groups remained unchanged from baseline at all pulmonary blood flow conditions. With TI, the CO was 5.1±1.2 L/min at baseline versus 5.1±1.2 L/min with a fully occluded PA (p=0.99). For ØTI, the CO was 4.5±1.4 L/min at baseline versus 4.5±1.2 L/min with no pulmonary blood flow (p=0.99). Furthermore, CO was not affected by the presence of TI (p=0.76). Mean right ventricular pressures were significantly lower in the TI group (TI=20.2±11 mm Hg versus ØTI=29.9±8.9 mm Hg; p0.5). Lastly, VV-ECMO maintained normal blood gases, with mean O2 saturations of 99% ± 4.1% in both groups. CONCLUSIONS: Right to left atrial shunting of oxygenated blood with VV-ECMO is capable of maintaining normal systemic hemodynamics and normal arterial blood gases during high right ventricular afterload dysfunction.</p

    Veno-venous extracorporeal membrane oxygenation with interatrial shunting: a novel approach to lung transplantation for patients in right ventricular failure.

    No full text
    OBJECTIVE: This study evaluated the effectiveness of an atrial septostomy with veno-venous extracorporeal membrane oxygenation in alleviating high afterload right ventricular dysfunction while providing respiratory support. This technique could be applied as a bridge to lung transplantation. METHODS: Sheep (56±3 kg) underwent a clamshell thoracotomy and hemodynamic instrumentation, including right ventricular pressure and cardiac output. Sheep with and without tricuspid insufficiency (n=5 each) were examined. While sheep were on extracorporeal membrane oxygenation, right ventricular failure was established by banding the pulmonary artery until cardiac output was 40% to 60% of baseline. An extracardiac atrial shunt was created with modified vascular grafts to examine the effect of shunt flow on hemodynamics. Hemodynamic data were thus collected at baseline, during right ventricular failure, and for 1 hour at 100% (fully open), 70%, 50%, and 30% of baseline shunt flow. RESULTS: Cardiac output was returned to baseline values (tricuspid insufficiency: 5.2±0.2 L/min, without tricuspid insufficiency: 5.3±1.2 L/min) with 100% shunt flow (tricuspid insufficiency: 4.8±1.1 L/min, without tricuspid insufficiency: 4.8±1.0 L/min; P=.15) but remained significantly lower than baseline at 70% to 30% shunt flow. At 100% shunt flow, tricuspid insufficiency shunt flow was 1.4±0.8 L/min and without tricuspid insufficiency shunt flow was 1.7±0.2 L/min. Right ventricular pressure was significantly elevated over baseline values at all shunt flows (P CONCLUSIONS: An atrial septostomy accompanied by veno-venous extracorporeal membrane oxygenation is capable of eliminating right ventricular failure while maintaining normal arterial blood gases if sufficient shunt flows are achieved. The presence of tricuspid insufficiency improves the efficacy of the shunt.</p
    corecore