328 research outputs found

    Assessing the Effectiveness of Saving Incentives

    Get PDF
    In this paper, we argue that there is more to be learned from recent research on the effectiveness of targeted saving incentives than is suggested by the wide variation in empirical estimates. First, we conclude that characterizations of saving appear to stimulate moderate amounts of new saving. Second, we suggest a cost-benefit approach to ask: What is the incremental gain in capital accumulation per dollar of foregone revenue? We find that for quite conservative measures of the saving impacts of IRAs or 401(k)s, the incremental gains in capital accumulation per dollar of lost revenue are large

    Precautionary Saving and Social Insurance

    Get PDF
    Microdata studies of household saving often find a significant group in the population with virtually no wealth, raising concerns about heterogeneity in motives for saving. In particular, this heterogeneity has been interpreted as evidence against the life-cycle model of saving. This paper argues that a life-cycle model can replicate observed patterns in household wealth accumulation after accounting explicitly for precautionary saving and asset-based means- tested social insurance. We demonstrate theoretically that social insurance programs with means tests based on assets discourage saving by households with low expected lifetime income. In addition, we evaluate the model using a dynamic programming model with four state variables. Assuming common preference parameters across lifetime- income groups, we are able to replicate the empirical pattern that low-income households are more likely than high-income households to hold virtually no wealth. Low wealth accumulation can be explained as a utility-maximizing response to asset-based means-tested welfare programs.

    Assessing the Effectiveness of Saving Incentives

    Get PDF
    The authors argue that there is more to be learned from recent research on the effectiveness of targeted saving incentives than the wide variation in empirical estimates suggests. They conclude that characterizations of \u27all new saving\u27 or \u27no new saving\u27 are extreme IRAs and 401(k) plans appear to stimulate moderate amounts of new saving. The authors suggest a cost-benefit approach to ask: What is the incremental gain in capital accumulation per dollar of foregone revenue? For quite conservative measures of the saving impacts of IRAs or 401(k)s, the incremental gains in capital accumulation per dollar of lost revenue are large

    Induced CNS expression of CXCL1 augments neurologic disease in a murine model of multiple sclerosis via enhanced neutrophil recruitment.

    Get PDF
    Increasing evidence points to an important role for neutrophils in participating in the pathogenesis of the human demyelinating disease MS and the animal model EAE. Therefore, a better understanding of the signals controlling migration of neutrophils as well as evaluating the role of these cells in demyelination is important to define cellular components that contribute to disease in MS patients. In this study, we examined the functional role of the chemokine CXCL1 in contributing to neuroinflammation and demyelination in EAE. Using transgenic mice in which expression of CXCL1 is under the control of a tetracycline-inducible promoter active within glial fibrillary acidic protein-positive cells, we have shown that sustained CXCL1 expression within the CNS increased the severity of clinical and histologic disease that was independent of an increase in the frequency of encephalitogenic Th1 and Th17 cells. Rather, disease was associated with enhanced recruitment of CD11b+ Ly6G+ neutrophils into the spinal cord. Targeting neutrophils resulted in a reduction in demyelination arguing for a role for these cells in myelin damage. Collectively, these findings emphasize that CXCL1-mediated attraction of neutrophils into the CNS augments demyelination suggesting that this signaling pathway may offer new targets for therapeutic intervention

    In Vivo Testing of MicroRNA-Mediated Gene Knockdown in Zebrafish

    Get PDF
    The zebrafish (Danio rerio) has become an attractive model for human disease modeling as there are a large number of orthologous genes that encode similar proteins to those found in humans. The number of tools available to manipulate the zebrafish genome is limited and many currently used techniques are only effective during early development (such as morpholino-based antisense technology) or it is phenotypically driven and does not offer targeted gene knockdown (such as chemical mutagenesis). The use of RNA interference has been met with controversy as off-target effects can make interpreting phenotypic outcomes difficult; however, this has been resolved by creating zebrafish lines that contain stably integrated miRNA constructs that target the desired gene of interest. In this study, we show that a commercially available miRNA vector system with a mouse-derived miRNA backbone is functional in zebrafish and is effective in causing eGFP knockdown in a transient in vivo eGFP sensor assay system. We chose to apply this system to the knockdown of transcripts that are implicated in the human cardiac disorder, Long QT syndrome

    The Importance of Precautionary Motives in Explaining Individual and Aggregate Saving

    Get PDF
    This paper examines predictions of a life-cycle simulation model -- in which individuals face uncertainty regarding their length of life, earnings, and out-of-pocket medical expenditures, and imperfect insurance and lending markets -- for individual and aggregate wealth accumulation. Relative to life-cycle or buffer-stock alternatives, our augmented life-cycle model better matches a variety of features of U.S. data, including: (1) aggregate wealth, (2) cross-sectional differences in wealth-age and consumption-age profiles by education group, and (3) short-run time-series co-movements of consumption and income.

    Diabetic Dead-in-Bed Syndrome: A Possible Link to a Cardiac Ion Channelopathy

    Get PDF
    Sudden unexpected nocturnal death among patients with diabetes occurs approximately ten times more commonly than in the general population. Malignant ventricular arrhythmia due to Brugada syndrome has been postulated as a cause, since a glucose-insulin bolus can unmask the Brugada electrocardiographic signature in genetically predisposed individuals. In this report we present a 16-year-old male with insulin-dependent diabetes who died suddenly at night. His diabetes had been well controlled, without significant hypoglycaemia. At autopsy, he had a full stomach and a glucose level of 7 mmol/L in vitreous humor, excluding hypoglycaemia. Genetic analysis of autopsy DNA revealed a missense mutation, c.370A>G (p.Ile124Val), in the GPD1L gene. A parent carried the same mutation and has QT prolongation. Mutations in this gene have been linked to Brugada syndrome and sudden infant death. The patient may have died from a ventricular arrhythmia, secondary to occult Brugada syndrome, triggered by a full stomach and insulin. The data suggest that molecular autopsies are warranted to investigate other cases of the diabetic dead-in-bed syndrome
    corecore