2 research outputs found

    Improved Assays for Determining the Cytosolic Access of Peptides, Proteins, and Their Mimetics

    No full text
    Proteins and other macromolecules that cross biological membranes have great potential as tools for research and next-generation therapeutics. Here, we describe two assays that effectively quantify the cytosolic localization of a number of previously reported peptides and protein domains. One assay, which we call GIGI (glucocorticoid-induced eGFP induction), is an amplified assay that informs on relative cytosolic access without the need for sophisticated imaging equipment or adherent cells. The second, GIGT (glucocorticoid-induced eGFP translocation), is a nonamplified assay that informs on relative cytosolic access and exploits sophisticated imaging equipment to facilitate high-content screens in live cells. Each assay was employed to quantify the cytosolic delivery of several canonical “cell permeable peptides,” as well as more recently reported minimally cationic miniature proteins and zinc finger nuclease domains. Our results show definitively that both overall charge as well as charge distribution influence cytosolic access and that small protein domains containing a discrete, helical, penta-Arg motif can dramatically improve the cytosolic delivery of small folded proteins such as zinc finger domains. We anticipate that the assays described herein will prove useful to explore and discover the fundamental physicochemical and genetic properties that influence both the uptake and endosomal release of peptidic molecules and their mimetics

    Dual Allosteric Inhibition of SHP2 Phosphatase

    No full text
    SHP2 is a cytoplasmic protein tyrosine phosphatase encoded by the <i>PTPN11</i> gene and is involved in cell proliferation, differentiation, and survival. Recently, we reported an allosteric mechanism of inhibition that stabilizes the auto-inhibited conformation of SHP2. SHP099 (<b>1</b>) was identified and characterized as a moderately potent, orally bioavailable, allosteric small molecule inhibitor, which binds to a tunnel-like pocket formed by the confluence of three domains of SHP2. In this report, we describe further screening strategies that enabled the identification of a second, distinct small molecule allosteric site. SHP244 (<b>2</b>) was identified as a weak inhibitor of SHP2 with modest thermal stabilization of the enzyme. X-ray crystallography revealed that <b>2</b> binds and stabilizes the inactive, closed conformation of SHP2, at a distinct, previously unexplored binding siteî—¸a cleft formed at the interface of the <i>N</i>-terminal SH2 and PTP domains. Derivatization of <b>2</b> using structure-based design resulted in an increase in SHP2 thermal stabilization, biochemical inhibition, and subsequent MAPK pathway modulation. Downregulation of DUSP6 mRNA, a downstream MAPK pathway marker, was observed in KYSE-520 cancer cells. Remarkably, simultaneous occupation of both allosteric sites by <b>1</b> and <b>2</b> was possible, as characterized by cooperative biochemical inhibition experiments and X-ray crystallography. Combining an allosteric site 1 inhibitor with an allosteric site 2 inhibitor led to enhanced pharmacological pathway inhibition in cells. This work illustrates a rare example of dual allosteric targeted protein inhibition, demonstrates screening methodology and tactics to identify allosteric inhibitors, and enables further interrogation of SHP2 in cancer and related pathologies
    corecore