17 research outputs found

    Mycorrhizas as a tool for ecological restoration

    Get PDF
    Antecedentes y Objetivos: Las micorrizas son asociaciones simbióticas entre los hongos micorrízicos y las raíces de las plantas. La planta intercambia fotosintetatos por nutrientes, que el hongo obtiene del suelo, como nitrógeno y fósforo. Las plantas micorrizadas son mas resistentes a la infección por patógenos, toleran mejor el estrés, y además promueven la conservación del suelo. El objetivo de este trabajo fue revisar aspectos generales del manejo de la simbiosis micorrízica de especies nativas de México, con el fin de usarlas como una herramienta potencial para la recuperación de suelos. Métodos: Se realizó una revisión exhaustiva de 140 artículos publicados entre los años 1984 y 2019. Se seleccionaron trabajos realizados en México con especies nativas y con información sobre los diferentes métodos de inoculación, y aquellos con conceptos ecológicos importantes. Las bases de datos bibliográficos consultadas fueron Scopus, Web of Science, Crop Protection Compendium Database, Forest Science Database, PubMed y SciELO. Para la búsqueda se utilizaron las siguientes palabras clave: “mycorrhizae”, “endo and ectomycorrhizae”, “ectomycorrhizae and Pinus”, “ectomycorrhizae and Quercus”, “mycorrhizae inoculation”, “ectomycorrhiza and ecological restoration” y “ectomycorrhiza and Mexico”. También se revisaron protocolos de investigación, tesis o patentes relacionadas. Resultados clave: Los resultados del análisis de la literatura revisada se estructuraron y se discutieron en seis apartados, incluyendo características generales de la asociación micorrizica, métodos generales de inoculación, complejidad simbiótica, impactos de la micorrización en la restauración de bosques templados, aspectos importantes para el establecimiento de la simbiosis, ejemplos de la utilización de hongos ectomicorrizicos y micorrizas arbusculares en bosques templados. Conclusiones: La presente revisión subraya la importancia de ahondar en el conocimiento y el potencial que tienen las asociaciones micorrízicas para ser utilizadas en programas de rehabilitación, y/o recuperación ecológica de zonas templadas afectadas o deforestadas.Background and Aims: Mycorrhizae are symbiotic associations between mycorrhiza fungi and plant roots. The plant interchanges photosynthates for nutrients, which the fungus obtains from the soil, such as nitrogen and phosphorus. Mycorrhizae plants are more resistant to infection by pathogens, tolerate stress better, and also promote soil conservation. The main purpose of this work was to analyze the general aspects of mycorrhizal symbiosis of species native to Mexico, to be used as a tool for soil recovery Methods: A comprehensive review of 140 original articles, experimental and synthesis papers published between 1984 and 2019 was carried out. Studies performed in Mexico with native species and with information on the different inoculation methods reported, and with ecological relevance were selected. The databases searched were Scopus, Web of Science, Crop Protection Compendium Database, Forest Science Database, PubMed and SciELO. Keywords were: "mycorrhizae", "endo and ectomycorrhizae", "ectomycorrhizaes and Pinus", "ectomycorrhizae and Quercus", "mycorrhizae inoculation", "ectomycorrhizae and ecological restoration", and “ectomycorrhiza and Mexico”. Related research protocols, thesis, or patents were searched. Key results: The results of the literature review were structured and discussed in six sections, including general characteristics of the mycorrizal association, general methods of inoculation, symbiotic complex, impact of mycorrization in temperate ecosystems restauration, important aspects for the symbiosis establishment, as well as some examples of ectomycorrizhae and arbuscular mycorrizhal fungi in temperate forest. Conclusions: This review highlights the importance of deepening the knowledge of the potential that mycorrhizal association have as a tool in ecological rehabilitation and recuperation of deforestated and perturbed temperate zones

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects

    No full text
    Worldwide, the effects of metal and metalloid toxicity are increasing, mainly due to anthropogenic causes. Soil contamination ranks among the most important factors, since it affects crop yield, and the metals/metalloids can enter the food chain and undergo biomagnification, having concomitant effects on human health and alterations to the environment. Plants have developed complex mechanisms to overcome these biotic and abiotic stresses during evolution. Metals and metalloids exert several effects on plants generated by elements such as Zn, Cu, Al, Pb, Cd, and As, among others. The main strategies involve hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Recent studies in the omics era have increased knowledge on the plant genome and transcriptome plasticity to defend against these stimuli. The aim of the present review is to summarize relevant findings on the mechanisms by which plants take up, accumulate, transport, tolerate, and respond to this metal/metalloid stress. We also address some of the potential applications of biotechnology to improve plant tolerance or increase accumulation

    Molecular Pathways Related to Sulforaphane as Adjuvant Treatment: A Nanomedicine Perspective in Breast Cancer

    No full text
    Because cancer is a multifactorial disease, it is difficult to identify the specific agents responsible for the disease&rsquo;s progression and development, but lifestyle and diet have been shown to play a significant role. Diverse natural compounds are demonstrating efficacy in the development of novel cancer therapies, including sulforaphane (1-isothiocyanate-4-(methylsulfinyl)butane), a compound found in broccoli and other cruciferous vegetables that promotes key biological processes such as apoptosis, cell cycle arrest, autophagy, and suppression of key signalling pathways such as the PI3K/AKT/mTOR pathway in breast cancer cells. However, one of the primary challenges with sulforaphane treatment is its low solubility in water and oral bioavailability. As a consequence, several investigations were conducted using this component complexed in nanoparticles, which resulted in superior outcomes when combined with chemotherapy drugs. In this study, we discuss the properties and benefits of sulforaphane in cancer therapy, as well as its ability to form complexes with nanomolecules and chemotherapeutic agents that synergize the antitumour response in breast cancer cells

    Trichomonas vaginalis Cysteine Proteinases: Iron Response in Gene Expression and Proteolytic Activity

    Get PDF
    We focus on the iron response of Trichomonas vaginalis to gene family products such as the cysteine proteinases (CPs) involved in virulence properties. In particular, we examined the effect of iron on the gene expression regulation and function of cathepsin L-like and asparaginyl endopeptidase-like CPs as virulence factors. We addressed some important aspects about CPs genomic organization and we offer possible explanations to the fact that only few members of this large gene family are expressed at the RNA and protein levels and the way to control their proteolytic activity. We also summarized all known iron regulations of CPs at transcriptional, posttranscriptional, and posttranslational levels along with new insights into the possible epigenetic and miRNA processes

    Three-Dimensional Genome Organization in Breast and Gynecological Cancers: How Chromatin Folding Influences Tumorigenic Transcriptional Programs

    No full text
    A growing body of research on the transcriptome and cancer genome has demonstrated that many gynecological tumor-specific gene mutations are located in cis-regulatory elements. Through chromosomal looping, cis-regulatory elements interact which each other to control gene expression by bringing distant regulatory elements, such as enhancers and insulators, into close proximity with promoters. It is well known that chromatin connections may be disrupted in cancer cells, promoting transcriptional dysregulation and the expression of abnormal tumor suppressor genes and oncogenes. In this review, we examine the roles of alterations in 3D chromatin interactions. This includes changes in CTCF protein function, cancer-risk single nucleotide polymorphisms, viral integration, and hormonal response as part of the mechanisms that lead to the acquisition of enhancers or super-enhancers. The translocation of existing enhancers, as well as enhancer loss or acquisition of insulator elements that interact with gene promoters, is also revised. Remarkably, similar processes that modify 3D chromatin contacts in gene promoters may also influence the expression of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), which have emerged as key regulators of gene expression in a variety of cancers, including gynecological malignancies

    Breast Cancer Cells Reprogram the Oncogenic lncRNAs/mRNAs Coexpression Networks in Three-Dimensional Microenvironment

    No full text
    Organotypic three-dimensional (3D) cell cultures more accurately mimic the characteristics of solid tumors in vivo in comparison with traditional two-dimensional (2D) monolayer cell models. Currently, studies on the regulation of long non-coding RNAs (lncRNAs) have not been explored in breast cancer cells cultured in 3D microenvironments. In the present research, we studied the expression and potential roles of lncRNAs in estrogen receptor-positive luminal B subtype BT-474 breast cancer cells grown over extracellular matrix proteins-enriched 3D cultures. Global expression profiling using DNA microarrays identifies 290 upregulated and 183 downregulated lncRNAs in 3D cultures relative to 2D condition. Using a co-expression analysis approach of lncRNAs and mRNAs pairs expressed in the same experimental conditions, we identify hundreds of regulatory axes modulating genes involved in cancer hallmarks, such as responses to estrogens, cell proliferation, hypoxia, apical junctions, and resistance to endocrine therapy. In addition, we identified 102 lncRNAs/mRNA correlations in 3D cultures, which were similar to those reported in TCGA datasets obtained from luminal B breast cancer patients. Interestingly, we also found a set of mRNAs transcripts co-expressed with LINC00847 and CTD-2566J3.1 lncRNAs, which were predictors of pathologic complete response and overall survival. Finally, both LINC00847 and CTD -2566J3.1 were co-expressed with essential genes for cancer genetic dependencies, such as FOXA1 y GINS2. Our experimental and predictive findings show that co-expressed lncRNAs/mRNAs pairs exhibit a high degree of similarity with those found in luminal B breast cancer patients, suggesting that they could be adequate pre-clinical tools to identify not only biomarkers related to endocrine therapy response and PCR, but to understand the biological behavior of cancer cells in 3D microenvironments

    <i>Brachybacterium conglomeratum</i> Is Associated with Cervicovaginal Infections and Human Papilloma Virus in Cervical Disease of Mexican Female Patients

    No full text
    Brachybacterium conglomeratum, traditionally considered an environmental bacterium, has recently garnered attention for its potential involvement in human health. While prior research hinted at its pathogenic role in humans, our study aims to determine its prevalence and associations in diverse clinical contexts. We examined vaginal swabs from three distinct patient groups: patients with low-grade squamous intraepithelial lesions (LSIL), patients with cervicovaginal infections, and patients with a history of precancerous lesions undergoing follow-up. B. conglomeratum was present in all three patient groups, with the highest prevalence observed in the LSIL group. Statistically significant associations were primarily identified in the LSIL group, where B. conglomeratum was present in 60% of cases. Notably, the LSIL group exhibited coinfections with multiple high-risk oncogenotypes of human papillomavirus (HPV), suggesting potential synergistic effects, and understanding these microbial relationships and their influence on viral persistence, particularly with HPV, holds promise for mitigating HPV-related carcinogenesis. Furthermore, Gardnerella vaginalis and Atopobium vaginae were frequently detected in this group, along with Ureaplasma parvum as the predominant sexually transmitted bacterium. In all cases, B. conglomeratum was found in association with these microorganisms rather than as a sole pathogen. This coexistence underscores the intricate microbial interactions within cervicovaginal infections and precancerous lesions. This study marks the first report of B. conglomeratum prevalence in women with these clinical conditions
    corecore