238 research outputs found

    Introduction to the Special Issue: Genome-Wide Association Studies

    Full text link
    Introduction to the Special Issue: Genome-Wide Association StudiesComment: Published in at http://dx.doi.org/10.1214/09-STS310 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Network inference in matrix-variate Gaussian models with non-independent noise

    Full text link
    Inferring a graphical model or network from observational data from a large number of variables is a well studied problem in machine learning and computational statistics. In this paper we consider a version of this problem that is relevant to the analysis of multiple phenotypes collected in genetic studies. In such datasets we expect correlations between phenotypes and between individuals. We model observations as a sum of two matrix normal variates such that the joint covariance function is a sum of Kronecker products. This model, which generalizes the Graphical Lasso, assumes observations are correlated due to known genetic relationships and corrupted with non-independent noise. We have developed a computationally efficient EM algorithm to fit this model. On simulated datasets we illustrate substantially improved performance in network reconstruction by allowing for a general noise distribution

    Genotype Imputation with Thousands of Genomes

    Get PDF
    Genotype imputation is a statistical technique that is often used to increase the power and resolution of genetic association studies. Imputation methods work by using haplotype patterns in a reference panel to predict unobserved genotypes in a study dataset, and a number of approaches have been proposed for choosing subsets of reference haplotypes that will maximize accuracy in a given study population. These panel selection strategies become harder to apply and interpret as sequencing efforts like the 1000 Genomes Project produce larger and more diverse reference sets, which led us to develop an alternative framework. Our approach is built around a new approximation that uses local sequence similarity to choose a custom reference panel for each study haplotype in each region of the genome. This approximation makes it computationally efficient to use all available reference haplotypes, which allows us to bypass the panel selection step and to improve accuracy at low-frequency variants by capturing unexpected allele sharing among populations. Using data from HapMap 3, we show that our framework produces accurate results in a wide range of human populations. We also use data from the Malaria Genetic Epidemiology Network (MalariaGEN) to provide recommendations for imputation-based studies in Africa. We demonstrate that our approximation improves efficiency in large, sequence-based reference panels, and we discuss general computational strategies for modern reference datasets. Genome-wide association studies will soon be able to harness the power of thousands of reference genomes, and our work provides a practical way for investigators to use this rich information. New methodology from this study is implemented in the IMPUTE2 software package

    A Bayesian Method for Detecting and Characterizing Allelic Heterogeneity and Boosting Signals in Genome-Wide Association Studies

    Full text link
    The standard paradigm for the analysis of genome-wide association studies involves carrying out association tests at both typed and imputed SNPs. These methods will not be optimal for detecting the signal of association at SNPs that are not currently known or in regions where allelic heterogeneity occurs. We propose a novel association test, complementary to the SNP-based approaches, that attempts to extract further signals of association by explicitly modeling and estimating both unknown SNPs and allelic heterogeneity at a locus. At each site we estimate the genealogy of the case-control sample by taking advantage of the HapMap haplotypes across the genome. Allelic heterogeneity is modeled by allowing more than one mutation on the branches of the genealogy. Our use of Bayesian methods allows us to assess directly the evidence for a causative SNP not well correlated with known SNPs and for allelic heterogeneity at each locus. Using simulated data and real data from the WTCCC project, we show that our method (i) produces a significant boost in signal and accurately identifies the form of the allelic heterogeneity in regions where it is known to exist, (ii) can suggest new signals that are not found by testing typed or imputed SNPs and (iii) can provide more accurate estimates of effect sizes in regions of association.Comment: Published in at http://dx.doi.org/10.1214/09-STS311 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Two-Stage Two-Locus Models in Genome-Wide Association

    Get PDF
    Studies in model organisms suggest that epistasis may play an important role in the etiology of complex diseases and traits in humans. With the era of large-scale genome-wide association studies fast approaching, it is important to quantify whether it will be possible to detect interacting loci using realistic sample sizes in humans and to what extent undetected epistasis will adversely affect power to detect association when single-locus approaches are employed. We therefore investigated the power to detect association for an extensive range of two-locus quantitative trait models that incorporated varying degrees of epistasis. We compared the power to detect association using a single-locus model that ignored interaction effects, a full two-locus model that allowed for interactions, and, most important, two two-stage strategies whereby a subset of loci initially identified using single-locus tests were analyzed using the full two-locus model. Despite the penalty introduced by multiple testing, fitting the full two-locus model performed better than single-locus tests for many of the situations considered, particularly when compared with attempts to detect both individual loci. Using a two-stage strategy reduced the computational burden associated with performing an exhaustive two-locus search across the genome but was not as powerful as the exhaustive search when loci interacted. Two-stage approaches also increased the risk of missing interacting loci that contributed little effect at the margins. Based on our extensive simulations, our results suggest that an exhaustive search involving all pairwise combinations of markers across the genome might provide a useful complement to single-locus scans in identifying interacting loci that contribute to moderate proportions of the phenotypic variance

    A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies

    Get PDF
    Genotype imputation methods are now being widely used in the analysis of genome-wide association studies. Most imputation analyses to date have used the HapMap as a reference dataset, but new reference panels (such as controls genotyped on multiple SNP chips and densely typed samples from the 1,000 Genomes Project) will soon allow a broader range of SNPs to be imputed with higher accuracy, thereby increasing power. We describe a genotype imputation method (IMPUTE version 2) that is designed to address the challenges presented by these new datasets. The main innovation of our approach is a flexible modelling framework that increases accuracy and combines information across multiple reference panels while remaining computationally feasible. We find that IMPUTE v2 attains higher accuracy than other methods when the HapMap provides the sole reference panel, but that the size of the panel constrains the improvements that can be made. We also find that imputation accuracy can be greatly enhanced by expanding the reference panel to contain thousands of chromosomes and that IMPUTE v2 outperforms other methods in this setting at both rare and common SNPs, with overall error rates that are 15%–20% lower than those of the closest competing method. One particularly challenging aspect of next-generation association studies is to integrate information across multiple reference panels genotyped on different sets of SNPs; we show that our approach to this problem has practical advantages over other suggested solutions

    Designing Genome-Wide Association Studies: Sample Size, Power, Imputation, and the Choice of Genotyping Chip

    Get PDF
    Genome-wide association studies are revolutionizing the search for the genes underlying human complex diseases. The main decisions to be made at the design stage of these studies are the choice of the commercial genotyping chip to be used and the numbers of case and control samples to be genotyped. The most common method of comparing different chips is using a measure of coverage, but this fails to properly account for the effects of sample size, the genetic model of the disease, and linkage disequilibrium between SNPs. In this paper, we argue that the statistical power to detect a causative variant should be the major criterion in study design. Because of the complicated pattern of linkage disequilibrium (LD) in the human genome, power cannot be calculated analytically and must instead be assessed by simulation. We describe in detail a method of simulating case-control samples at a set of linked SNPs that replicates the patterns of LD in human populations, and we used it to assess power for a comprehensive set of available genotyping chips. Our results allow us to compare the performance of the chips to detect variants with different effect sizes and allele frequencies, look at how power changes with sample size in different populations or when using multi-marker tags and genotype imputation approaches, and how performance compares to a hypothetical chip that contains every SNP in HapMap. A main conclusion of this study is that marked differences in genome coverage may not translate into appreciable differences in power and that, when taking budgetary considerations into account, the most powerful design may not always correspond to the chip with the highest coverage. We also show that genotype imputation can be used to boost the power of many chips up to the level obtained from a hypothetical “complete” chip containing all the SNPs in HapMap. Our results have been encapsulated into an R software package that allows users to design future association studies and our methods provide a framework with which new chip sets can be evaluated

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or \u27scaffold\u27) of haplotypes across each chromosome. We then phase the sequence data \u27onto\u27 this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved
    corecore