1,847 research outputs found

    Conformational profiling of a G-rich sequence within the c-KIT promoter

    Get PDF
    G-quadruplexes (G4) within oncogene promoters are considered to be promising anticancer targets. However, often they undergo complex structural rearrangements that preclude a precise description of the optimal target. Moreover, even when solved structures are available, they refer to the thermodynamically stable forms but little or no information is supplied about their complex multistep folding pathway. To shed light on this issue, we systematically followed the kinetic behavior of a G-rich sequence located within the c-KIT proximal promoter (kit2) in the presence of monovalent cations K + and Na + . A very short-lived intermediate was observed to start the G4 folding process in both salt conditions. Subsequently, the two pathways diverge to produce distinct thermodynamically stable species (parallel and antiparallel G-quadruplex in K + and Na + , respectively). Remarkably, in K + -containing solution a branched pathway is required to drive the wild type sequence to distribute between a monomeric and dimeric G-quadruplex. Our approach has allowed us to identify transient forms whose relative abundance is regulated by the environment; some of them were characterized by a half-life within the timescale of physiological DNA processing events and thus may represent possible unexpected targets for ligands recognition

    Performance Measures Using Electronic Health Records: Five Case Studies

    Get PDF
    Presents the experiences of five provider organizations in developing, testing, and implementing four types of electronic quality-of-care indicators based on EHR data. Discusses challenges, and compares results with those from traditional indicators

    25-Hydroxyvitamin D Depletion Does Not Exacerbate MPTP-Induced Dopamine Neuron Damage in Mice

    Get PDF
    Recent clinical evidence supports a link between 25-hydroxyvitamin D insufficiency (serum 25-hydroxyvitamin D [25(OH)D] levels <30 ng/mL) and Parkinson’s disease. To investigate the effect of 25(OH)D depletion on neuronal susceptibility to toxic insult, we induced a state of 25(OH)D deficiency in mice and then challenged them with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We found there was no significant difference between control and 25(OH)D-deficient animals in striatal dopamine levels or dopamine transporter and tyrosine hydroxylase expression after lesioning with MPTP. Additionally, we found no difference in tyrosine hydroxylase expression in the substantia nigra pars compacta. Our data suggest that reducing 25(OH)D serum levels in mice has no effect on the vulnerability of nigral dopaminergic neurons in vivo in this model system of parkinsonism

    Dual-specificity phosphatase 1 and tristetraprolin cooperate to regulate macrophage responses to lipopolysaccharide

    Get PDF
    Dual-specificity phosphatase (DUSP) 1 dephosphorylates and inactivates members of the MAPK superfamily, in particular, JNKs, p38a, and p38b MAPKs. It functions as an essential negative regulator of innate immune responses, hence disruption of the Dusp1 gene renders mice extremely sensitive to a wide variety of experimental inflammatory challenges. The principal mechanisms behind the overexpression of inflammatory mediators by Dusp12/2 cells are not known. In this study, we use a genetic approach to identify an important mechanism of action of DUSP1, involving the modulation of the activity of the mRNA-destabilizing protein tristetraprolin. This mechanism is key to the control of essential early mediators of inflammation, TNF, CXCL1, and CXCL2, as well as the anti-inflammatory cytokine IL-10. The same mechanism also contributes to the regulation of a large number of transcripts induced by treatment of macrophages with LPS. These findings demonstrate that modulation of the phosphorylation status of tristetraprolin is an important physiological mechanism by which innate immune responses can be controlled

    Using Ai-Generated Suggestions From ChatGPT to Optimize Clinical Decision Support

    Get PDF
    OBJECTIVE: To determine if ChatGPT can generate useful suggestions for improving clinical decision support (CDS) logic and to assess noninferiority compared to human-generated suggestions. METHODS: We supplied summaries of CDS logic to ChatGPT, an artificial intelligence (AI) tool for question answering that uses a large language model, and asked it to generate suggestions. We asked human clinician reviewers to review the AI-generated suggestions as well as human-generated suggestions for improving the same CDS alerts, and rate the suggestions for their usefulness, acceptance, relevance, understanding, workflow, bias, inversion, and redundancy. RESULTS: Five clinicians analyzed 36 AI-generated suggestions and 29 human-generated suggestions for 7 alerts. Of the 20 suggestions that scored highest in the survey, 9 were generated by ChatGPT. The suggestions generated by AI were found to offer unique perspectives and were evaluated as highly understandable and relevant, with moderate usefulness, low acceptance, bias, inversion, redundancy. CONCLUSION: AI-generated suggestions could be an important complementary part of optimizing CDS alerts, can identify potential improvements to alert logic and support their implementation, and may even be able to assist experts in formulating their own suggestions for CDS improvement. ChatGPT shows great potential for using large language models and reinforcement learning from human feedback to improve CDS alert logic and potentially other medical areas involving complex, clinical logic, a key step in the development of an advanced learning health system

    Gain-of-function mutation of tristetraprolin impairs negative feedback control of macrophages in vitro yet has overwhelmingly anti-inflammatory consequences in vivo

    Get PDF
    The mRNA-destabilizing factor tristetraprolin (TTP) binds in a sequencespecific manner to the 3= untranslated regions of many proinflammatory mRNAs and recruits complexes of nucleases to promote rapid mRNA turnover. Mice lacking TTP develop a severe, spontaneous inflammatory syndrome characterized by the overexpression of tumor necrosis factor and other inflammatory mediators. However, TTP also employs the same mechanism to inhibit the expression of the potent antiinflammatory cytokine interleukin 10 (IL-10). Perturbation of TTP function may therefore have mixed effects on inflammatory responses, either increasing or decreasing the expression of proinflammatory factors via direct or indirect mechanisms. We recently described a knock-in mouse strain in which the substitution of 2 amino acids of the endogenous TTP protein renders it constitutively active as an mRNA-destabilizing factor. Here we investigate the impact on the IL-10-mediated anti-inflammatory response. It is shown that the gain-of-function mutation of TTP impairs IL-10-mediated negative feedback control of macrophage function in vitro. However, the in vivo effects of TTP mutation are uniformly anti-inflammatory despite the decreased expression of IL-10
    • …
    corecore