298 research outputs found

    Aktivitas Reporting Analyst pada Departemen Digital & Omnichannel PT Multitrend Indo (Kanmo Group)

    Get PDF
    Kanmo Group atau Kanmo Retail Group merupakan perusahaan yang bergerak di bidang retail yang dibentuk pada tahun 2005, garis besarnya perusahaan ini di bangun sebagai bentuk mitra untuk merek merek besar pada bisnis ritel yang tersebar di seluruh dunia. Departemen yang ada di Kanmo Group sendiri terbilang banyak, salah satunya adalah Departemen Digital & Omnichannel. Dalam departemen ini, ada peran yang diperuntukan untuk pengolahan data yaitu Reporting Analyst. Dimana, menjadi Reporting Analyst berarti bertanggung jawab akan banyak laporan pekerjaan untuk banyak sektor, terhadap pengolahan data menjadi informasi, dan terhadap informasi yang nantinya disajikan dalam bentuk visual. Proses kerja magang ini memakan waktu kurang lebih 5 bulan dengan periode dari 3 Agustus 2022 sampai dengan 30 Desember 2022. Hasil yang diperoleh pada saat proses kerja magang berlangsung antara lain, meningkatkan kemampuan dalam pemahaman data, mempelajari platform platform baru yang mendukung keperluan bisnis, mempelajari business analytics tools, serta mendapatkan banyak pembelajaran terutama dalam bersikap di lingkup kerja

    Activation of minority-variant Plasmodium vivax hypnozoites following artesunate + amodiaquine treatment in a 23-year old man with relapsing malaria in Antananarivo, Madagascar

    Get PDF
    In endemic areas, Plasmodium vivax relapses are difficult to distinguish from new infections. Genotyping of patients who experience relapse after returning to a malaria-free area can be used to explore the nature of hypnozoite activation and relapse. This paper describes a person who developed P. vivax malaria for the first time after travelling to Boriziny in the malaria endemic coastal area of Madagascar, then suffered two P. vivax relapses 11 weeks and 21 weeks later despite remaining in Antananarivo in the malaria-free central highlands area. He was treated with the combination artesunate + amodiaquine according to the national malaria policy in Madagascar. Genotyping by PCR-RFLP at pvmsp-3α as well as pvmsp1 heteroduplex tracking assay (HTA) showed the same dominant genotype at each relapse. Multiple recurring minority variants were also detected at each relapse, highlighting the propensity for multiple hypnozoite clones to activate simultaneously to cause relapse

    SeekDeep: single-base resolution de novo clustering for amplicon deep sequencing

    Get PDF
    PCR amplicon deep sequencing continues to transform the investigation of genetic diversity in viral, bacterial, and eukaryotic populations. In eukaryotic populations such as Plasmodium falciparum infections, it is important to discriminate sequences differing by a single nucleotide polymorphism. In bacterial populations, single-base resolution can provide improved resolution towards species and strains. Here, we introduce the SeekDeep suite built around the qluster algorithm, which is capable of accurately building de novo clusters representing true, biological local haplotypes differing by just a single base. It outperforms current software, particularly at low frequencies and at low input read depths, whether resolving single-base differences or traditional OTUs. SeekDeep is open source and works with all major sequencing technologies, making it broadly useful in a wide variety of applications of amplicon deep sequencing to extract accurate and maximal biologic information

    Streamlined, PCR-based testing for pfhrp2- and pfhrp3-negative Plasmodium falciparum

    Get PDF
    Abstract Background Rapid diagnostic tests (RDTs) that detect histidine-rich protein 2 (PfHRP2) are used throughout Africa for the diagnosis of Plasmodium falciparum malaria. However, recent reports indicate that parasites lacking the pfhrp2 and/or histidine-rich protein 3 (pfhrp3) genes, which produce antigens detected by these RDTs, are common in select regions of South America, Asia, and Africa. Proving the absence of a gene is challenging, and multiple PCR assays targeting these genes have been described. A detailed characterization and comparison of published assays is needed to facilitate robust and streamlined testing approaches. Results Among six pfhrp2 and pfhrp3 PCR assays tested, the lower limit of detection ranged from 0.01 pg/µL to 0.1 ng/µL of P. falciparum 3D7 strain DNA, or approximately 0.4–4000 parasite genomes/µL. By lowering the elongation temperature to 60 °C, a tenfold improvement in the limit of detection and/or darker bands for all exon 1 targets and for the first-round reaction of a single exon 2 target was achieved. Additionally, assays targeting exon 1 of either gene yielded spurious amplification of the paralogous gene. Using these data, an optimized testing algorithm for the detection of pfhrp2- and pfhrp3-negative P. falciparum is proposed. Conclusions Surveillance of pfhrp2- and pfhrp3-negative P. falciparum requires careful laboratory workflows. PCR-based testing methods coupled with microscopy and/or antigen testing serve as useful tools to support policy development. Standardized approaches to the detection of pfhrp2- and pfhrp3-negative P. falciparum should inform efforts to define the impact of these parasites

    Can pharmacogenomics improve malaria drug policy?

    Get PDF
    Coordinated global efforts to prevent and control malaria have been a tour-de-force for public health, but success appears to have reached a plateau in many parts of the world. While this is a multifaceted problem, policy strategies have largely ignored genetic variations in humans as a factor that influences both selection and dosing of antimalarial drugs. This includes attempts to decrease toxicity, increase effectiveness and reduce the development of drug resistance, thereby lowering health care costs. We review the potential hurdles to developing and implementing pharmacogenetic-guided policies at a national or regional scale for the treatment of uncomplicated falciparum malaria. We also consider current knowledge on some component drugs of artemisinin combination therapies and ways to increase our understanding of host genetics, with the goal of guiding policy decisions for drug selection

    A prolonged outbreak of KPC-3-producing Enterobacter cloacae and Klebsiella pneumoniae driven by multiple mechanisms of resistance transmission at a large academic burn center

    Get PDF
    Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacter cloacae have been recently recognized in the United States. Whole-genome sequencing (WGS) has become a useful tool for analysis of outbreaks and for determining transmission networks of multidrug-resistant organisms in healthcare settings, including carbapenem-resistant Enterobacteriaceae (CRE). We experienced a prolonged outbreak of CRE of E. cloacae and K. pneumoniae over a three-year period at a large academic burn center despite rigorous infection control measures. To understand the molecular mechanisms that sustained this outbreak, we investigated the CRE outbreak isolates using WGS. Twenty-two clinical isolates of CRE, including E. cloacae (N=15) and K. pneumoniae (N=7), were sequenced and analyzed genetically. WGS revealed that this outbreak, which seemed epidemiologically unlinked, was in fact genetically linked over a prolonged period. Multiple mechanisms were found to account for the ongoing outbreak of KPC-3-producing E. cloacae and K. pneumoniae . This outbreak was primarily maintained by a clonal expansion of E. cloacae ST114 with distribution of multiple resistance determinants. Plasmid and transposon analysis suggested that the majority of bla KPC-3 was transmitted via an identical Tn 4401 b element on part of a common plasmid. WGS analysis demonstrated complex transmission dynamics within the burn center at levels of strain and/or plasmid in association with transposon, highlighting the versatility of KPC-producing Enterobacteriaceae in their ability to utilize multiple modes to resistance-gene propagation

    Short Report: Detection of the Dihydrofolate Reductase–164L Mutation in Plasmodium falciparum Infections from Malawi by Heteroduplex Tracking Assay

    Get PDF
    Standard polymerase chain reaction methods often cannot detect drug-resistance mutations in Plasmodium falciparum infections if the mutation is present in ≤ 20% of the parasites. A heteroduplex tracking assay was developed that can detect dihydrofolate reductase 164-L mutations in variants representing 1% of the parasites in an individual host. Using this assay, we confirmed the presence of the mutation in P. falciparum infections in Malawi

    Minority-Variant pfcrt K76T Mutations and Chloroquine Resistance, Malawi

    Get PDF
    Genotyping of the chloroquine-resistance biomarker pfcrt (Plasmodium falciparum chloroquine resistance transporter gene) suggests that, in the absence of chloroquine pressure, Plasmodium falciparum parasites in Malawi have reverted to chloroquine sensitivity. However, malaria infections in Africa are commonly polyclonal, and standard PCRs cannot detect minority genotypes if present in <20% of the parasites in an individual host. We have developed a multiple site-specific heteroduplex tracking assay (MSS-HTA) that can detect pfcrt 76T mutant parasites consisting of as little as 1% of the parasite population. In clinical samples, no pfcrt 76T was detected in 87 pregnant Malawian women by standard PCR. However, 22 (25%) contained minority-variant resistant genotypes detected by the MSS-HTA. These results were confirmed by subcloning and sequencing. This finding suggests that the chloroquine-resistant genotype remains common in Malawians and that PCR-undetectable drug-resistant genotypes may be present in disease-endemic populations. Surveillance for minority-variant drug resistant mutations may be useful in making antimalarial drug policy

    Next-Generation Sequencing and Comparative Analysis of Sequential Outbreaks Caused by Multidrug-Resistant Acinetobacter baumannii at a Large Academic Burn Center

    Get PDF
    Next-generation sequencing (NGS) analysis has emerged as a promising molecular epidemiological method for investigating health care-associated outbreaks. Here, we used NGS to investigate a 3-year outbreak of multidrug-resistant Acinetobacter baumannii (MDRAB) at a large academic burn center. A reference genome from the index case was generated using de novo assembly of PacBio reads. Forty-six MDRAB isolates were analyzed by pulsed-field gel electrophoresis (PFGE) and sequenced using an Illumina platform. After mapping to the index case reference genome, four samples were excluded due to low coverage, leaving 42 samples for further analysis. Multilocus sequence types (MLST) and the presence of acquired resistance genes were also determined from the sequencing data. A transmission network was inferred from genomic and epidemiological data using a Bayesian framework. Based on single-nucleotide variant (SNV) differences, this MDRAB outbreak represented three sequential outbreaks caused by distinct clones. The first and second outbreaks were caused by sequence type 2 (ST2), while the third outbreak was caused by ST79. For the second outbreak, the MLST and PFGE results were discordant. However, NGS-based SNV typing detected a recombination event and consequently enabled a more accurate phylogenetic analysis. The distribution of resistance genes varied among the three outbreaks. The first- and second-outbreak strains possessed a bla OXA-23-like group, while the third-outbreak strains harbored a bla OXA-40-like group. NGS-based analysis demonstrated the superior resolution of outbreak transmission networks for MDRAB and provided insight into the mechanisms of strain diversification between sequential outbreaks through recombination

    Longevity of Genotype-Specific Immune Responses to Plasmodium falciparum Merozoite Surface Protein 1 in Kenyan Children from Regions of Different Malaria Transmission Intensity

    Get PDF
    Naturally acquired immunity to Plasmodium falciparum presents a changing landscape as malaria control programs and vaccine initiatives are implemented. Determining which immunologic indicators remain surrogates of past infection, as opposed to mediators of protection, led us to compare stability of immune responses across regions with divergent malaria transmission intensities. A repeat cross-sectional study of Kenyan children from a malaria-holoendemic area and an epidemic-prone area was used to examine longitudinal antibody and interferon-gamma (IFN-gamma) responses to the 3D7 and FVO variants of merozoite surface protein 1 (MSP1). Antibodies to MSP1 were common in both study populations and did not significantly wane over a 21-month time period. IFN-gamma responses were less frequent and rapidly disappeared in children after a prolonged period of no malaria transmission. Antibody and IFN-gamma responses rarely correlated with each other; however, MSP1-specific IFN-gamma response correlated with lack of concurrent P. falciparum parasitemia of the same genotype, though only statistically significantly in the malaria-holoendemic region (odds ratio = 0.31, 95% confidence interval = 0.12-0.84). This study affirms that antimalarial antibodies are informative for evaluation of history of malaria exposure within individuals, whereas cell-mediated immunity, though short lived under natural exposure conditions, might provide an assessment of recent infection and protection from parasitemia
    • …
    corecore