27 research outputs found

    Integrating transposable elements in the 3D genome

    Get PDF
    Chromosome organisation is increasingly recognised as an essential component of genome regulation, cell fate and cell health. Within the realm of transposable elements (TEs) however, the spatial information of how genomes are folded is still only rarely integrated in experimental studies or accounted for in modelling. Whilst polymer physics is recognised as an important tool to understand the mechanisms of genome folding, in this commentary we discuss its potential applicability to aspects of TE biology. Based on recent works on the relationship between genome organisation and TE integration, we argue that existing polymer models may be extended to create a predictive framework for the study of TE integration patterns. We suggest that these models may offer orthogonal and generic insights into the integration profiles (or "topography") of TEs across organisms. In addition, we provide simple polymer physics arguments and preliminary molecular dynamics simulations of TEs inserting into heterogeneously flexible polymers. By considering this simple model, we show how polymer folding and local flexibility may generically affect TE integration patterns. The preliminary discussion reported in this commentary is aimed to lay the foundations for a large-scale analysis of TE integration dynamics and topography as a function of the three-dimensional host genome

    Understanding Flavin-Dependent Halogenase Reactivity via Substrate Activity Profiling

    No full text
    The activity of four native FDHs and four engineered FDH variants on 93 low-molecular-weight arenes was used to generate FDH substrate activity profiles. These profiles provided insights into how substrate class, functional group substitution, electronic activation, and binding affect FDH activity and selectivity. The enzymes studied could halogenate a far greater range of substrates than have been previously recognized, but significant differences in their substrate specificity and selectivity were observed. Trends between the electronic activation of each site on a substrate and halogenation conversion at that site were established, and these data, combined with docking simulations, suggest that substrate binding can override electronic activation even on compounds differing appreciably from native substrates. These findings provide a useful framework for understanding and exploiting FDH reactivity for organic synthesis

    One-Pot C–N/C–C Cross-Coupling of Methyliminodiacetic Acid Boronyl Arenes Enabled by Protective Enolization

    No full text
    Iterative cross-coupling is a highly efficient and versatile strategy for modular construction in organic synthesis, though this has historically been demonstrated solely in the context of C–C bond formation. A C–N cross-coupling of haloarene methyliminodiacetic acid (MIDA) boronates with a wide range of aromatic and aliphatic amines is reported. Successful cross-coupling of aliphatic amines was realized only through protective enolization of the MIDA group. This reaction paradigm was subsequently utilized to achieve a one-pot C–N/C–C cross-coupling sequence

    MicroCycle: An Integrated and Automated Platform to Accelerate Drug Discovery

    No full text
    We herein describe the development and application of a modular technology platform which incorporates recent advances in plate-based microscale chemistry, automated purification, in situ quantification, and robotic liquid handling to enable rapid access to high-quality chemical matter already formatted for assays. In using microscale chemistry and thus consuming minimal chemical matter, the platform is not only efficient but also follows green chemistry principles. By reorienting existing high-throughput assay technology, the platform can generate a full package of relevant data on each set of compounds in every learning cycle. The multiparameter exploration of chemical and property space is hereby driven by active learning models. The enhanced compound optimization process is generating knowledge for drug discovery projects in a time frame never before possible
    corecore