65 research outputs found

    Revisiting global trends in freshwater insect biodiversity

    Get PDF
    A recent global meta-analysis reported a decrease in terrestrial but increase in freshwater insect abundance and biomass (van Klink et al., Science 368, p. 417). The authors suggested that water quality has been improving, thereby challenging recent reports documenting drastic global declines in freshwater biodiversity. We raise two major concerns with the meta-analysis and suggest that these account for the discrepancy with the declines reported elsewhere. First, total abundance and biomass alone are poor indicators of the status of freshwater insect assemblages, and the observed differences may well have been driven by the replacement of sensitive species with tolerant ones. Second, many of the datasets poorly represent global trends and reflect responses to local conditions or nonrandom site selection. We conclude that the results of the meta-analysis should not be considered indicative of an overall improvement in the condition of freshwater ecosystems.FH and GK are supported through the project“Species protection through environmental friendly lighting”funded bythe Federal Agency for Nature Conservation (BfN) within the framework of the Federal Programme for BiologicalDiversity with funds from the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU).AM acknowledges funding through US NSF Macrosystems Biology Program (grant no. 1442595), and SD by the LeibnizCompetition (J45/2018). The authors are grateful to the reviewers and the editor for their comments, which helpedimprove the text. Open access funding enabled and organized by Projekt DEA

    Genesis, goals and achievements of Long-Term Ecological Research at the global scale: A critical review of ILTER and future directions

    Get PDF
    Since its founding in 1993 the International Long-term Ecological Research Network (ILTER) has gone through pronounced development phases. The current network comprises 44 active member LTER networks representing 700 LTER Sites and ~ 80 LTSER Platforms across all continents, active in the fields of ecosystem, critical zone and socio-ecological research. The critical challenges and most important achievements of the initial phase have now become state-of-the-art in networking for excellent science. At the same time increasing integration, accelerating technology, networking of resources and a strong pull for more socially relevant scientific information have been modifying the mission and goals of ILTER. This article provides a critical review of ILTER's mission, goals, development and impacts. Major characteristics, tools, services, partnerships and selected examples of relative strengths relevant for advancing ILTER are presented. We elaborate on the tradeoffs between the needs of the scientific community and stakeholder expectations. The embedding of ILTER in an increasingly collaborative landscape of global environmental observation and ecological research networks and infrastructures is also reflected by developments of pioneering regional and national LTER networks such as SAEON in South Africa, CERN/CEOBEX in China, TERN in Australia or eLTER RI in Europe. The primary role of ILTER is currently seen as a mechanism to investigate ecosystem structure, function, and services in response to a wide range of environmental forcings using long-term, place-based research. We suggest four main fields of activities and advancements for the next decade through development/delivery of a: (1) Global multi-disciplinary community of researchers and research institutes; (2) Strategic global framework and strong partnerships in ecosystem observation and research; (3) Global Research Infrastructure (GRI); and (4) a scientific knowledge factory for societally relevant information on sustainable use of natural resources

    Does personality affect premating isolation between locally-adapted populations?

    Get PDF
    Background: One aspect of premating isolation between diverging, locally-adapted population pairs is female mate choice for resident over alien male phenotypes. Mating preferences often show considerable individual variation, and whether or not certain individuals are more likely to contribute to population interbreeding remains to be studied. In the Poecilia mexicana-species complex different ecotypes have adapted to hydrogen sulfide (H2S)-toxic springs, and females from adjacent non-sulfidic habitats prefer resident over sulfide-adapted males. We asked if consistent individual differences in behavioral tendencies (animal personality) predict the strength and direction of the mate choice component of premating isolation in this system. Results: We characterized focal females for their personality and found behavioral measures of ‘novel object exploration’, ‘boldness’ and ‘activity in an unknown area’ to be highly repeatable. Furthermore, the interaction term between our measures of exploration and boldness affected focal females’ strength of preference (SOP) for the resident male phenotype in dichotomous association preference tests. High exploration tendencies were coupled with stronger SOPs for resident over alien mating partners in bold, but not shy, females. Shy and/or little explorative females had an increased likelihood of preferring the non-resident phenotype and thus, are more likely to contribute to rare population hybridization. When we offered large vs. small conspecific stimulus males instead, less explorative females showed stronger preferences for large male body size. However, this effect disappeared when the size difference between the stimulus males was small. Conclusions: Our results suggest that personality affects female mate choice in a very nuanced fashion. Hence, population differences in the distribution of personality types could be facilitating or impeding reproductive isolation between diverging populations depending on the study system and the male trait(s) upon which females base their mating decisions, respectively

    Social network analysis resolves temporal dynamics of male dominance relationships

    Get PDF
    Social organization is often studied through point estimates of individual association or interaction patterns, which does not account for temporal changes in the course of familiarization processes and the establishment of social dominance. Here, we present new insights on short-term temporal dynamics in social organization of mixed-sex groups that have the potential to affect sexual selection patterns. Using the live-bearing Atlantic molly (Poecilia mexicana), a species with pronounced male size polymorphism, we investigated social network dynamics of mixed sex experimental groups consisting of eight females and three different-sized males over a period of 5 days. Analyzing association-based social networks as well as direct measures of spatial proximity, we found that large males tended to monopolize most females, while excluding small- and medium-bodied males from access to females. This effect, however, emerged only gradually over time, and different-sized males had equal access to females on day 1 as well as day 2, though to a lesser extent. In this highly aggressive species with strong social dominance stratifications, the observed temporal dynamics in male-female association patterns may balance the presumed reproductive skew among differentially competitive male phenotypes when social structures are unstable (i.e., when individual turnover rates are moderate to high). Ultimately, our results point toward context-dependent sexual selection arising from temporal shifts in social organization. © 2014 Springer-Verlag Berlin Heidelberg

    Role of abiotic factors and biotic interactions in biological invasions : a comparison of natural and human-induced invasions in freshwater ecosystems

    No full text
    Invasive non-native species are key components of human-induced global environmen-tal change and lead to a loss of biodiversity, alterations of species interactions and changes of ecosystem services. Freshwater ecosystems in particular are strongly affect-ed by biological invasions, since they are spatially restricted environments and often already heavily impacted by anthropogenic activities. Recent human-induced species invasions are often characterized by long-distance dispersal, with many species having extended their native distribution range within a very short time frame. However, a long term view into the past shows that biological invasions are common phenomena in nature—representing the arrival of a species into a location in which it did not originally evolve—as a result of climatic changes, geotectonic activity or other natural events. Once a species arrives in a new habitat, it may experience an array of novel selection pressures resulting from abiotic and biotic environmental factors and simultaneously act as a novel selective agent on the native fauna. Consequences of species invasions are manifold. My thesis, which combines seven studies on different aspects of biological invasions, aims to explore the influence of abiotic stressors and biotic interactions during species introductions and range expansions, as well as the consequences of biological invasions on evolutionary and ecosystem processes. The first part of my thesis examines human-induced biological invasions, dealing with basic ecological characteristics of invaded ecosystems, novel predator-prey interactions, functional consequences of species invasions and certain behavioral traits that may contribute to the invasiveness of some species. The second part of my thesis examined distribution patterns and phenotypic trait divergence in species that historically invaded new geographical areas. I investigated variation of abiotic and biotic selection factors along a stream gradient as well as ecological and evolutionary consequences of species invasions to extreme habitats. The results highlight the importance of simultaneously considering processes involved in natural invasions and during human-induced invasions to understand the success of invading species. We often lack detailed information on the impacts of historical biological inva-sions. Also, we are currently lacking crucial knowledge about the time scales during which different mechanisms (behavioral flexibility, plastic phenotypic changes, and ge-netic adaptation) play a role during biological invasions and affect species exchange and establishment. Comparative analyses of historical, natural invasion and recent (man-made) invasions can provide insights into the relative importance of the processes governing adaptation to abiotic stressors and selection resulting from biotic interactions. Beyond their negative effects, the establishment of invasive species and the subsequent range expansion represent “natural experiments” to investigate fundamental questions in ecology and evolution. My comparison of natural and human-induced biological invasions revealed that in many cases preadaptation to altered abiotic conditions plays a key role during early stages of invasions and range expansions. Considering the evolutionary history of invasive species and the evolutionary history of the recipient native fauna might therefore help predict the consequences of biological invasions for the ecosystem under consideration and the future success of the invading species. This knowledge can also be implemented when formulating conservation strategies, including methods to mitigate and manage human-induced biological invasions

    Off to new shores: Climate niche expansion in invasive mosquitofish (Gambusia spp.)

    No full text
    Aim: Formerly introduced for their presumed value in controlling mosquito-borne diseases, the two mosquitofish Gambusia affinis and G. holbrooki (Poeciliidae) are now among the world's most widespread invasive alien species, negatively impacting aquatic ecosystems around the world. These inconspicuous freshwater fish are, once their presence is noticed, difficult to eradicate. It is, therefore, of utmost importance to assess their geographic potential and to identify their likely ability to persist under novel climatic conditions. Location Global. Methods We build species distribution models using occurrence data from the native and introduced distribution ranges to identify putative niche shifts and further ascertain the areas climatically suitable for the establishment and possible spread of mosquitofish. Results We found significant niche expansions into climatic regions outside their natural climatic conditions, emphasizing the importance of integrating climatic niches of both native and invasive ranges into projections. In particular, there was a marked shift toward tropical regions in Asia and a clear niche shift of European G. holbrooki. This ecological flexibility partly explains the massive success of the two species, and substantially increases the risk for further range expansion. We also showed that the potential for additional expansion resulting from climate change is enormous—especially in Europe. Main conclusions Despite the successful invasion history and ongoing range expansions, many countries still lack proper preventive measures. Thus, we urge policy makers to carefully evaluate the risk both mosquitofish pose to a particular area and to initiate appropriate management strategies

    Ecologically and medically important black flies of the genus Simulium: identification of biogeographical groups according to similar larval niches

    No full text
    Highlights ‱ Three ecological groups were identified based on distributional patterns. ‱ Old assessments were confirmed with the latest occurrence data. ‱ For each group, we derived different population trends in times of global change. ‱ Global change elevates importance of vector-borne diseases. ‱ Our results serve as base for effective Simuliidae monitoring. Abstract The black fly genus Simulium includes medically and ecologically important species, characterized by a wide variation of ecological niches largely determining their distributional patterns. In a rapidly changing environment, species-specific niche characteristics determine whether a species benefits or not. With aquatic egg, larval and pupal stages followed by a terrestrial adult phase, their spatial arrangements depend upon the interplay of aquatic conditions and climatic-landscape parameters in the terrestrial realm. The aim of this study was to enhance the understanding of the distributional patterns among Simulium species and their ecological drivers. In an ecological niche modelling approach, we focused on 12 common black fly species with different ecological requirements. Our modelling was based on available distribution data along with five stream variables describing the climatic, land-cover, and topographic conditions of river catchments. The modelled freshwater habitat suitability was spatially interpolated to derive an estimate of the adult black flies' probability of occurrence. Based on similarities in the spatial patterns of modelled habitat suitability we were able to identify three biogeographical groups, which allows us to confirm old assessments with current occurrence data: (A) montane species, (B) broad range species and (C) lowland species. The five veterinary and human medical relevant species Simulium equinum, S. erythrocephalum, S. lineatum, S. ornatum and S. reptans are mainly classified in the lowland species group. In the course of climatic changes, it is expected that biocoenosis will slightly shift towards upstream regions, so that the lowland group will presumably emerge as the winner. This is mainly explained by wider ecological niches, including a higher temperature tolerance and tolerance to various pollutants. In conclusion, these findings have significant implications for human and animal health. As exposure to relevant Simulium species increases, it becomes imperative to remain vigilant, particularly in investigating the potential transmission of pathogens

    Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod

    No full text
    Background: Selective landscapes in rivers are made up by an array of selective forces that vary from source to downstream regions or between seasons, and local/temporal variation in fitness maxima can result in gradual spatio-temporal variation of phenotypic traits. This study aimed at establishing freshwater amphipods as future model organisms to study adaptive phenotypic diversification (evolutionary divergence and/or adaptive plasticity) along stream gradients. Methods: We collected Gammarus roeselii from 16 sampling sites in the Rhine catchment during two consecutive seasons (summer and winter). Altogether, we dissected n = 1648 individuals and quantified key parameters related to morphological and life-history diversification, including naturally selected (e.g., gill surface areas) as well as primarily sexually selected traits (e.g., male antennae). Acknowledging the complexity of selective regimes in streams and the interrelated nature of selection factors, we assessed several abiotic (e.g., temperature, flow velocity) and biotic ecological parameters (e.g., conspecific densities, sex ratios) and condensed them into four principal components (PCs). Results: Generalized least squares models revealed pronounced phenotypic differentiation in most of the traits investigated herein, and components of the stream gradient (PCs) explained parts of the observed differences. Depending on the trait under investigation, phenotypic differentiation could be ascribed to variation in abiotic conditions, anthropogenic disturbance (influx of thermally polluted water), or population parameters. For example, female fecundity showed altitudinal variation and decreased with increasing conspecific densities, while sexual dimorphism in the length of male antennae—used for mate finding and assessment—increased with increasing population densities and towards female-biased sex ratios. Conclusions: We provide a comprehensive protocol for comparative analyses of intraspecific variation in life history traits in amphipods. Whether the observed phenotypic differentiation over small geographical distances reflects evolutionary divergence or plasticity (or both) remains to be investigated in future studies. Independent of the mechanisms involved, variation in several traits is likely to have consequences for ecosystem functions. For example, leaf-shredding in G. roeselii strongly depends on body size, which varied in dependence of several ecological parameters

    Data from: Elevated temperatures translate into reduced dispersal abilities in a natural population of an aquatic insect

    No full text
    1. Rising global temperatures force many species to shift their distribution ranges. However, whether or not (and how fast) such range shifts occur depends on species’ dispersal capacities. In most ecological studies, dispersal-related traits (such as the wing size or wing loading in insects) are treated as fixed, species-specific characteristics, ignoring the important role of phenotypic plasticity during insect development. 2. We tested the hypothesis that dispersal-related traits themselves vary in dependence of ambient environmental conditions (temperature regimes, discharge patterns and biotic interactions during individual development). 3. We collected data over 8 years from a natural population of the crane fly Tipula maxima in central Germany. Using linear mixed-effect models, we analysed how phenotypic traits, phenological characteristics and population densities are affected by environmental conditions during the preceding 3, 6 and 12 months. 4. We found a moderate (5.6%) increase in wing length per 1°C increase of mean annual temperatures during the previous year. At the same time, body weight increased by as much as 17.8% in females and 26.9% in males per 1°C, likely driven by increased habitat productivity, which resulted in a 16.4% (female) and 19.3% (male) increased wing loading. We further found a shorter, more synchronized emergence period (i.e., a narrower time frame for dispersal) with increasing temperatures. 5. Altogether, our results suggest that dispersal abilities of T. maxima were negatively affected by elevated temperatures, and we discuss how similar patterns might affect the persistence of populations of other aquatic insects, especially stenoecious taxa with narrow distribution ranges. Our study calls for integration of information on temperature-induced phenotypic plasticity of dispersal-related traits into models forecasting range shifts in the face of climate change. Furthermore, the patterns reported here are likely to affect metapopulation dynamics of aquatic insects under climate change conditions and may contribute to the ongoing decline of insect biomass and diversity
    • 

    corecore