16 research outputs found

    Specificity and functionality of microRNA inhibitors

    Get PDF
    Background: Micro(mi)RNAs regulate gene expression through translational attenuation and messenger (m)RNA degradation, and are associated with differentiation, homeostasis and disease. Natural miRNA target recognition is determined primarily by perfect complementarity in a seed region (nucleotide positions 2 to 7) with additional interactions contributing in a sequence- and target-specific manner. Synthetic miRNA target analogs, which are fully complementary, chemically modified oligonucleotides, have been used successfully to inhibit miRNA function. Results: In this paper, we present a first systematic study to evaluate the effect of mismatches in the target site on synthetic inhibitor activity. Panels of miRNA inhibitors containing two-nucleotide mismatches across the target site were tested against three miRNAs (miR-21, miR-22 and miR-122). The results showed that the function of inhibitors vary as mismatch positions in the inhibitors change. Conclusions: The data indicate that features important for natural miRNA target recognition (such as seed region complementarity) are also important for inhibitor functionality. In addition, base pairing at a second, more 3 ' region appears to be equally important in determining the efficacy of synthetic inhibitors. Considering the importance of these inhibitor regions and the expression of closely related miRNA sequences will enable researchers to interpret results more accurately in future experiments

    Genetic engineering of vaccine manufacturing cell lines enhances poliovirus and enterovirus 71 production

    Get PDF
    Vaccine manufacturing costs and production limitations represent two fundamental challenges facing researchers, public health officials and vaccine manufacturers committed to global health solutions. To address these issues, we have investigated whether the cell lines employed by vaccine manufacturers can be engineered to enhance vaccine virus production. As a first step in a proof-of-principle study, a genome-wide RNA Interference (RNAi) screen was conducted to identify host gene modulation events that increased Sabin 2 poliovirus (PV) replication. Primary screen hits were validated in a Vero vaccine manufacturing cell line using both attenuated and wild type poliovirus strains. This approach identified multiple single and dual gene knockdown events that increased PV titers \u3e20-fold and \u3e50-fold, respectively. Top candidate genes did not affect virus antigenicity, cell viability, or cell doubling times. Moreover, CRISPR/Cas9-mediated knockout (KO) of the top three targets created stable cell substrates with improved viral vaccine strain production. Please click Additional Files below to see the full abstract

    Development of improved vaccine cell lines against rotavirus

    No full text
    Rotavirus is a major cause of severe gastroenteritis among very young children. In developing countries, rotavirus is the major cause of mortality in children under five years old, causing up to 20% of all childhood deaths in countries with high diarrheal disease burden, with more than 90% of these deaths occurring in Africa and Asia. Rotavirus vaccination mimics the first infection without causing illness, thus inducing strong and broad heterotypic immunity against prospective rotavirus infections. Two live vaccines are available, Rotarix and RotaTeq, but vaccination efforts are hampered by high production costs. Here, we present a dataset containing a genome-wide RNA interference (RNAi) screen that identified silencing events that enhanced rotavirus replication. Evaluated against several rotavirus vaccine strains, hits were validated in a Vero vaccine cell line as well as CRISPR/Cas9 generated cells permanently and stably lacking the genes that affect RV replication. Knockout cells were dramatically more permissive to RV replication and permitted an increase in rotavirus replication. These data show a means to improve manufacturing of rotavirus vaccine

    The contributions of dsRNA structure to Dicer specificity and efficiency

    No full text
    Dicer processes long double-stranded RNA (dsRNA) and pre-microRNAs to generate the functional intermediates (short interfering RNAs and microRNAs) of the RNA interference pathway. Here we identify features of RNA structure that affect Dicer specificity and efficiency. The data presented show that various attributes of the 3′ end structure, including overhang length and sequence composition, play a primary role in determining the position of Dicer cleavage in both dsRNA and unimolecular, short hairpin RNA (shRNA). We also demonstrate that siRNA end structure affects overall silencing functionality. Awareness of these new features of Dicer cleavage specificity as it is related to siRNA functionality provides a more detailed understanding of the RNAi mechanism and can shape the development of hairpins with enhanced functionality

    MicroRNA screening identifies miR-134 as a regulator of poliovirus and enterovirus 71 infection

    No full text
    MicroRNAs (miRNAs) regulate virus replication through multiple mechanisms. Poliovirus causes a highly debilitating disease and though global efforts to eradicate polio have sharply decreased polio incidence, unfortunately three countries (Afghanistan, Nigeria and Pakistan) remain polio-endemic. We hypothesize that understanding the host factors involved in polio replication will identify novel prophylactic and therapeutic targets against polio and related viruses. In this data set, employing genome wide screens of miRNA mimics and inhibitors, we identified miRNAs which significantly suppressed polio replication. Specifically, miR-134 regulates poliovirus replication via modulation of ras-related nuclear protein (RAN), an important component of the nuclear transport system. MiR-134 also inhibited other Picornaviridae viruses including EV71, a growing concern and a high priority for vaccination in Asian countries like China. These findings demonstrate a novel mechanism for miRNA regulation of poliovirus and other Picornaviridae viruses in host cells, and thereby may provide a novel approach in combating infection and a potential approach for the development of anti-Picornaviridae strategies

    Small Interfering RNA Profiling Reveals Key Role of Clathrin-Mediated Endocytosis and Early Endosome Formation for Infection by Respiratory Syncytial Virusâ–¿

    No full text
    Respiratory syncytial virus (RSV) is a common cause of respiratory tract infections in infants and the elderly. Like many other pH-independent enveloped viruses, RSV is thought to enter at the cell surface, independently of common endocytic pathways. We have used a targeted small interfering RNA (siRNA) library to identify key cellular genes involved in cytoskeletal dynamics and endosome trafficking that are important for RSV infection. Surprisingly, RSV infection was potently inhibited by siRNAs targeting genes associated with clathrin-mediated endocytosis, including clathrin light chain. The important role of clathrin-mediated endocytosis was confirmed by the expression of well-characterized dominant-negative mutants of genes in this pathway and by using the clathrin endocytosis inhibitor chlorpromazine. We conclude that, while RSV may be competent to enter at the cell surface, clathrin function and endocytosis are a necessary and important part of a productive RSV infection, even though infection is strictly independent of pH. These findings raise the possibility that other pH-independent viruses may share a similar dependence on endocytosis for infection and provide a new potential avenue for treatment of infection

    Induction of the interferon response by siRNA is cell type– and duplex length–dependent

    No full text
    Long (27–29-bp dsRNA) Dicer-dependent substrates have been identified as potent mediators of RNAi-induced gene knockdown in HEK293 and HeLa cells. As the lengths of these molecules are reported to be below the threshold generally regarded as necessary for induction of the mammalian interferon (IFN) response, these long siRNA are being considered as RNAi substrates in both research and therapeutic settings. In this report, we demonstrate that >23-bp dsRNA can influence cell viability and induce a potent IFN response (highlighted by a strong up-regulation of the dsRNA receptor, Toll-like receptor 3) in a cell type-specific manner. This finding suggests that the length threshold for siRNA induction of the IFN response is not fixed but instead varies significantly among different cell types. Given the diversity of cell types that comprise whole organisms, these findings suggest great care should be taken when considering length variations of dsRNA molecules for RNAi experimentation, especially in therapeutic applications

    Off-target effects by siRNA can induce toxic phenotype

    No full text
    Although recent microarray studies have provided evidence of RNA interference (RNAi)-mediated off-target gene modulation, little is known about whether these changes induce observable phenotypic outcomes. Here we show that a fraction of randomly selected small inhibitory RNAs (siRNAs) can induce changes in cell viability in a target-independent fashion. The observed toxicity requires an intact RNAi pathway and can be eliminated by the addition of chemical modifications that reduce off-target effects. Furthermore, an analysis of toxic and nontoxic duplexes identifies a strong correlation between the toxicity and the presence of a 4-base-pair motif (UGGC) in the RISC-entering strand of toxic siRNA. This article provides further evidence of siRNA-induced off-target effects generating a measurable phenotype and also provides an example of how such undesirable phenotypes can be mitigated by addition of chemical modifications to the siRNA
    corecore