4 research outputs found

    Mitigating the effects of reference sequence bias in single-multiplex massively parallel sequencing of the mitochondrial DNA control region.

    No full text
    Sequence analysis of the mitochondrial DNA (mtDNA) control region can provide forensically useful information, particularly in challenging samples where autosomal DNA profiling fails. Sub-division of the 1122-bp region into shorter PCR fragments improves data recovery, and such fragments can be analysed together via massively parallel sequencing (MPS). Here, we generate mtDNA data using the prototype PowerSeqâ„¢ Auto/Mito/Y System (Promega) MPS assay, in which a single PCR reaction amplifies ten overlapping amplicons of the control region, in a set of 101 highly diverse samples representing most major clades of the mtDNA phylogeny. The overlapping multiplex design leads to non-uniform coverage in the regions of overlap, where it is further increased by short amplicons generated alongside the intended products. Primer sequences in targeted amplification libraries are a potential source of reference sequence bias and thus should be removed, but the proprietary nature of the primers in commercial kits necessitates an alternative approach that minimises data loss: here, we introduce the bioinformatic selection of sequencing reads spanning putative primer sites (Overarching Read Enrichment Option, OREO). While OREO performs well in mitigating the effects of primer sequences at the ends of sequence reads, we still find evidence of the internalisation of primer-derived sequences by overlap extension, which may compromise the ability to call variants or to measure heteroplasmy in primer-binding regions. The commercially available PowerSeqâ„¢ CRM Nested System design prevents primer internalisation, as shown in a reanalysis of a subset of 57 samples that contain possible heteroplasmies. In combination with OREO, the CRM Nested kit mitigates reference sequence bias, allowing heteroplasmic variants to be estimated down to a 5% threshold. Provided appropriate steps are taken in data processing, single-reaction multiplex assays represent robust tools to analyse mtDNA control region variation. The OREO approach will allow users to bypass the effects of unknown primer sequences in any single-reaction tiled multiplex and eliminate primer-derived bias in overlapping amplicon sequencing studies, in both forensic and non-forensic settings

    A phylogenetic framework facilitates Y-STR variant discovery and classification via massively parallel sequencing

    No full text
    Short-tandem repeats on the male-specific region of the Y chromosome (Y-STRs) are permanently linked as haplotypes, and therefore Y-STR sequence diversity can be considered within the robust framework of a phylogeny of haplogroups defined by single-nucleotide polymorphisms (SNPs). Here we use massively parallel sequencing (MPS) to analyse the 23 Y-STRs in Promega’s prototype PowerSeqÔ Auto/Mito/Y System kit (containing the markers of the PowerPlex® Y23 [PPY23] System) in a set of 100 diverse Y chromosomes whose phylogenetic relationships are known from previous megabase-scale resequencing. Including allele duplications and alleles resulting from likely somatic mutation, we characterised 2311 alleles, demonstrating 99.83% concordance with capillary electrophoresis (CE) data on the same sample set. The set contains 267 distinct sequence-based alleles (an increase of 58% compared to the 169 detectable by CE), including 60 novel Y-STR variants phased with their flanking sequences which have not been reported previously to our knowledge. Variation includes 46 distinct alleles containing non-reference variants of SNPs/indels in both repeat and flanking regions, and 145 distinct alleles containing repeat pattern variants (RPV). For DYS385a,b, DYS481 and DYS390 we observed repeat count variation in short flanking segments previously considered invariable, and suggest new MPS-based structural designations based on these. We considered the observed variation in the context of the Y phylogeny: several specific haplogroup associations were observed for SNPs and indels, reflecting the low mutation rates of such variant types; however, RPVs showed less phylogenetic coherence and more recurrence, reflecting their relatively high mutation rates. In conclusion, our study reveals considerable additional diversity at the Y-STRs of the PPY23 set via MPS analysis, demonstrates high concordance with CE data, facilitates nomenclature standardisation, and places Y-STR sequence variants in their phylogenetic context

    Massively parallel sequencing of autosomal STRs and identity-informative SNPs highlights consanguinity in Saudi Arabia

    No full text
    While many studies have been undertaken of Middle Eastern populations using autosomal STR profiling by capillary electrophoresis, little has so far been published from this region on the forensic use of massively parallel sequencing (MPS). Here, we carried out MPS of 27 autosomal STRs and 91 identity-informative SNPs (iiSNPs) with the Verogen ForenSeqâ„¢ DNA Signature Prep Kit on a representative sample of 89 Saudi Arabian males, and analysed the resulting sequence data using Verogen's ForenSeq Universal Analysis Software (UAS) v1.3 and STRait Razor v3.0. This revealed sequence variation in the composition of complex STR arrays, and SNPs in their flanking regions, which raised the number of STR alleles from 238 distinct length variants to 357 sequence sub-variants. Similarly, between one and three additional polymorphic sites were observed within the amplicons of 37 of the 91 iiSNPs, forming up to six microhaplotypes per locus. These further enhance discrimination compared to the biallelic target SNP data presented by the primary UAS interface. In total, we observed twenty-two STR alleles previously unrecognised in the STRait Razor v3.0 default allele list, along with nine SNPs flanking target iiSNPs that were not highlighted by the UAS. Sequencing reduced the STR-based random match probability (RMP) from 2.62E-30 to 3.49E-34, and analysis of the iiSNP microhaplotypes reduced RMP from 9.97E-37 to 6.83E-40. The lack of significant linkage disequilibrium between STRs and target iiSNPs allowed the two marker types to be combined using the product rule, yielding a RMP of 2.39E-73. Evidence of consanguinity was apparent from both marker types. While TPOX was the only locus displaying a significant deviation from Hardy-Weinberg equilibrium, 23 out of 27 STRs and 63 out of 91 iiSNPs showed fewer than expected heterozygotes, demonstrating an overall homozygote excess probably reflecting the high frequency of first-cousin marriages in Saudi Arabia. We placed our data in a global context by considering the same markers in the Human Genome Diversity Panel (HGDP), revealing that the Saudi sample was typical of Middle Eastern populations, with a higher level of inbreeding than is seen in most European, African and Central/South Asian populations, correlating with known patterns of endogamy. Given reduced levels of diversity within endogamous groups, the ability to combine the discrimination power of both STRs and SNPs offers significant benefits in the analysis of forensic evidence in Saudi Arabia and the Middle East region more generally

    Forensic science and the right to access to justice: Testing the efficacy of self-examination intimate DNA swabs to enhance victim-centred responses to sexual violence in low-resource environments

    Full text link
    In developed countries, DNA profiling routinely forms part of the forensic strategy in the investigation of sexual violence. Medical examinations provide opportunities for recovering DNA evidence from intimate swabs, which can be particularly probative in cases where the identity of the perpetrator is unknown and proof of intercourse between two people is required. In low-resource environments, such as developing countries, remote geographic locations, conflict (and post-conflict) affected regions and displaced communities where access to medical examinations is lacking, DNA evidence is not available to support prosecutions and perpetrators are rarely identified and held accountable for crimes of sexual violence. This paper reports the results of a proof-of-concept study testing the efficacy of a novel self-examination intimate swab designed for recovering DNA following unprotected sexual intercourse. The results of this study corroborate previous research which has demonstrated that male DNA profiles can be successfully recovered by post-coital, self-examination methods, and discusses how this novel approach could enable the integration of DNA evidence into victim-centred approaches to investigating and prosecuting sexual violence in low-resource environments. The results and discussion challenge the prevailing assumption that intimate DNA swabs must be collected by trained medical professionals in order to be of evidential value
    corecore