2,723 research outputs found
Exponential decay for the damped wave equation in unbounded domains
We study the decay of the semigroup generated by the damped wave equation in
an unbounded domain. We first prove under the natural geometric control
condition the exponential decay of the semigroup. Then we prove under a weaker
condition the logarithmic decay of the solutions (assuming that the initial
data are smoother). As corollaries, we obtain several extensions of previous
results of stabilisation and control
Research Impact Assessment: from ex post to real-time assessment
International audienceThis paper presents an ongoing research and development project to build research management tools based on real-time impactanalysis (the toolset is labelled ASIRPArt). The ambition is to use the lessons learned from ex post research impact assessment (RIA), building from the ASIRPA project which was launched in 2011. The ASIRPA approach is currently implemented on a routine base at the French public research organisation INRA (Institut National de la Recherche Agronomique). Therefore, the project draws on lessons learned from ex post RIA and the experience of researchers and actors involved in research programming. The aim of ASIRPArt is to design an approach and tools to help conduct research projects or programmes with the aim to amplify impacts. The challenge of the current project is to develop management tools based on a better understanding of the mechanisms that generate research impact. These tools will be coproduced with potential users. Given the uncertainty and complexity that characterise the transformation processes linked to research activities, we do not intend to design ballistic steering tools but to produce tools to foster learning processes, coordination and reflexivity of the actors involved. Our approach takes inspiration in different streams of literature
The Origin of Fe II Emission in AGN
We used a very large set of models of broad emission line (BEL) clouds in AGN
to investigate the formation of the observed Fe II emission lines. We show that
photoionized BEL clouds cannot produce both the observed shape and observed
equivalent width of the 2200-2800A Fe II UV bump unless there is considerable
velocity structure corresponding to a microturbulent velocity parameter v_turb
> 100 km/s for the LOC models used here. This could be either microturbulence
in gas that is confined by some phenomenon such as MHD waves, or a velocity
shear such as in the various models of winds flowing off the surfaces of
accretion disks. The alternative way that we can find to simultaneously match
both the observed shape and equivalent width of the Fe II UV bump is for the Fe
II emission to be the result of collisional excitation in a warm, dense gas.
Such gas would emit very few lines other than Fe II. However, since the
collisionally excited gas would constitute yet another component in an already
complicated picture of the BELR, we prefer the model involving turbulence. In
either model, the strength of Fe II emission relative to the emission lines of
other ions such as Mg II depends as much on other parameters (either v_turb or
the surface area of the collisionally excited gas) as it does on the iron
abundance. Therefore, the measurement of the iron abundance from the FeII
emission in quasars becomes a more difficult problem.Comment: 23 pages. Accepted by Ap
Predicted FeII Emission-Line Strengths from Active Galactic Nuclei
We present theoretical FeII emission line strengths for physical conditions
typical of Active Galactic Nuclei with Broad-Line Regions. The FeII line
strengths were computed with a precise treatment of radiative transfer using
extensive and accurate atomic data from the Iron Project. Excitation mechanisms
for the FeII emission included continuum fluorescence, collisional excitation,
self-fluorescence amoung the FeII transitions, and fluorescent excitation by
Lyman-alpha and Lyman-beta. A large FeII atomic model consisting of 827 fine
structure levels (including states to E ~ 15 eV) was used to predict fluxes for
approximately 23,000 FeII transitions, covering most of the UV, optical, and IR
wavelengths of astrophysical interest. Spectral synthesis for wavelengths from
1600 Angstroms to 1.2 microns is presented. Applications of present theoretical
templates to the analysis of observations are described. In particular, we
discuss recent observations of near-IR FeII lines in the 8500 Angstrom -- 1
micron region which are predicted by the Lyman-alpha fluorescence mechanism. We
also compare our UV spectral synthesis with an empirical iron template for the
prototypical, narrow-line Seyfert galaxy I Zw 1. The theoretical FeII template
presented in this work should also applicable to a variety of objects with FeII
spectra formed under similar excitation conditions, such as supernovae and
symbiotic stars.Comment: 33 pages, 15 postscript figure
The Intrinsically X-ray Weak Quasar PHL 1811. II. Optical and UV Spectra and Analysis
This is the second of two papers reporting observations and analysis of the
unusually bright (m_b=14.4), luminous (M_B=-25.5), nearby (z=0.192) narrow-line
quasar PHL 1811. The first paper reported that PHL 1811 is intrinsically X-ray
weak, and presented a spectral energy distribution (SED). Here we present HST
STIS optical and UV spectra, and ground-based optical spectra. The optical and
UV line emission is very unusual. There is no evidence for forbidden or
semiforbidden lines. The near-UV spectrum is dominated by very strong FeII and
FeIII, and unusual low-ionization lines such as NaID and CaII H&K are observed.
High-ionization lines are very weak; CIV has an equivalent width of 6.6A, a
factor of ~5 smaller than measured from quasar composite spectra. An unusual
feature near 1200A can be deblended in terms of Ly\alpha, NV, SiII, and CIII*
using the blueshifted CIV profile as a template. Photoionization modeling shows
that the unusual line emission can be explained qualitatively by the unusually
soft SED. Principally, a low gas temperature results in inefficient emission of
collisionally excited lines, including the semiforbidden lines generally used
as density diagnostics. The emission resembles that of high-density gas; in
both cases this is a consequence of inefficient cooling. PHL 1811 is very
unusual, but we note that quasar surveys are generally biased against finding
similar objects.Comment: Accepted for publication in ApJS. Full resolution figures available
here: http://www.nhn.ou.edu/~leighly/phl1811_paper1.pd
A striking correspondence between the dynamics generated by the vector fields and by the scalar parabolic equations
The purpose of this paper is to enhance a correspondence between the dynamics
of the differential equations on and those
of the parabolic equations on a bounded
domain . We give details on the similarities of these dynamics in the
cases , and and in the corresponding cases ,
and dim() respectively. In addition to
the beauty of such a correspondence, this could serve as a guideline for future
research on the dynamics of parabolic equations
Tribological properties of room temperature fluorinated graphite heat-treated under fluorine atmosphere
This work is concerned with the study of the tribologic properties of room temperature fluorinated graphite heat-treated under fluorine atmosphere. The fluorinated compounds all present good intrinsic friction properties (friction coefficient in the range 0.05–0.09). The tribologic performances are optimized if the materials present remaining graphitic domains (influenced by the presence of intercalated fluorinated species) whereas the perfluorinated compounds, where the fluorocarbon layers are corrugated (armchair configuration of the saturated carbon rings) present higher friction coefficients. Raman analyses reveal that the friction process induces severe changes in the materials structure especially the partial re-building of graphitic domains in the case of perfluorinated compounds which explains the improvement of μ during the friction tests for these last materials
X-ray Absorption Near-Edge Structure calculations with pseudopotentials. Application to K-edge in diamond and alpha-quartz
We present a reciprocal-space pseudopotential scheme for calculating X-ray
absorption near-edge structure (XANES) spectra. The scheme incorporates a
recursive method to compute absorption cross section as a continued fraction.
The continued fraction formulation of absorption is advantageous in that it
permits the treatment of core-hole interaction through large supercells
(hundreds of atoms). The method is compared with recently developed
Bethe-Salpeter approach. The method is applied to the carbon K-edge in diamond
and to the silicon and oxygen K-edges in alpha-quartz for which polarized XANES
spectra were measured. Core-hole effects are investigated by varying the size
of the supercell, thus leading to information similar to that obtained from
cluster size analysis usually performed within multiple scattering
calculations.Comment: 11 pages, 4 figure
Killing Tensors and Conformal Killing Tensors from Conformal Killing Vectors
Koutras has proposed some methods to construct reducible proper conformal
Killing tensors and Killing tensors (which are, in general, irreducible) when a
pair of orthogonal conformal Killing vectors exist in a given space. We give
the completely general result demonstrating that this severe restriction of
orthogonality is unnecessary. In addition we correct and extend some results
concerning Killing tensors constructed from a single conformal Killing vector.
A number of examples demonstrate how it is possible to construct a much larger
class of reducible proper conformal Killing tensors and Killing tensors than
permitted by the Koutras algorithms. In particular, by showing that all
conformal Killing tensors are reducible in conformally flat spaces, we have a
method of constructing all conformal Killing tensors (including all the Killing
tensors which will in general be irreducible) of conformally flat spaces using
their conformal Killing vectors.Comment: 18 pages References added. Comments and reference to 2-dim case.
Typos correcte
Screening for in vitro systematic reviews: a comparison of screening methods and training of a machine learning classifier
Objective: Existing strategies to identify relevant studies for systematic review may not perform equally well across research domains. We compare four approaches based on either human or automated screening of either title and abstract or full text, and report the training of a machine learning algorithm to identify in vitro studies from bibliographic records. Methods: We used a systematic review of oxygen-glucose deprivation (OGD) in PC-12 cells to compare approaches. For human screening, two reviewers independently screened studies based on title and abstract or full text, with disagreements reconciled by a third. For automated screening, we applied text mining to either title and abstract or full text. We trained a machine learning algorithm with decisions from 2000 randomly selected PubMed Central records enriched with a dataset of known in vitro studies. Results: Full-text approaches performed best, with human (sensitivity: 0.990, specificity: 1.000 and precision: 0.994) outperforming text mining (sensitivity: 0.972, specificity: 0.980 and precision: 0.764). For title and abstract, text mining (sensitivity: 0.890, specificity: 0.995 and precision: 0.922) outperformed human screening (sensitivity: 0.862, specificity: 0.998 and precision: 0.975). At our target sensitivity of 95% the algorithm performed with specificity of 0.850 and precision of 0.700. Conclusion: In this in vitro systematic review, human screening based on title and abstract erroneously excluded 14% of relevant studies, perhaps because title and abstract provide an incomplete description of methods used. Our algorithm might be used as a first selection phase in in vitro systematic reviews to limit the extent of full text screening required.</p
- …