12 research outputs found

    Zika and Other Brain Parenchyma Viruses: Is Nanomedicine the Answer?

    No full text

    The effects of the cyclosporin A, a P-glycoprotein inhibitor, on the pharmacokinetics of baicalein in the rat: a microdialysis study

    No full text
    1. Baicalein is a bioactive flavonoid isolated from the root of Scutellaria baicalensis Georgi, a medicinal herb that has been used since ancient times to treat bacterial infections. As little is known concerning its pharmacokinetics, this study focussed on its pharmacokinetics as well as the possible roles of the multidrug transporter P-glycoprotein on its distribution and disposition. 2. Three microdialysis probes were simultaneously inserted into the jugular vein, the hippocampus and the bile duct of male Sprague–Dawley rats for sampling in biological fluids following the administration of baicalein (10, 30 and 60 mg kg(−1)) through the femoral vein. The P-glycoprotein inhibitor cyclosporin A was used to help delineate its roles. 3. The study design consisted of two groups of six rats in parallel: control rats which received baicalein alone and the cyclosporin A treated-group in which the rats were injected cyclosporin A, a P-glycoprotein inhibitor, 10 min prior to baicalein administration. 4. Cyclosporin A treatment resulted in a significant increase in elimination half-life, mean residence time and area under the concentration versus time curve (AUC) of unbound baicalein in the brain. However, AUC in the bile was decreased. 5. The decline of baicalein in the hippocampus, blood and bile suggested that there was rapid exchange and equilibration between the peripheral compartment and the central nervous system. In addition, the results indicated that baicalein was able to penetrate the blood–brain barrier as well as undergoing hepatobiliary excretion. 6. Although no direct transport studies were undertaken and multiple factors may affect BBB penetration and hepatobiliary excretion, strong association of the involvement of P-glycoprotein in these processes is indicated

    Peptide delivery to the brain via adsorptive-mediated endocytosis: Advances with SynB vectors

    No full text
    Biological membranes normally restrict the passage of hydrophilic molecules. This impairs the use of a wide variety of drugs for biomedical applications. To overcome this problem, researchers have developed strategies that involve conjugating the molecule of interest to one of a number of peptide entities that are efficiently transported across the cell membranes. In the past decade, a number of different peptide families with the ability to cross the cell membranes have been identified. Certain of these families enter the cells by a receptor-independent mechanism, are short (10–27 amino acid residues), and can deliver successfully various cargoes across the cell membrane into the cytoplasm or nucleus. Surprisingly, some of these vectors, the SynB vectors, have also shown the ability to deliver hydrophilic molecules across the blood-brain barrier, one of the major obstacles to the development of drugs to combat diseases affecting the CNS

    A prodrug nanoparticle approach for the oral delivery of a hydrophilic peptide, leucine(5)-enkephalin, to the brain

    No full text
    The oral use of neuropeptides to treat brain disease is currently not possible because of a combination of poor oral absorption, short plasma half-lives and the blood-brain barrier. Here we demonstrate a strategy for neuropeptide brain delivery via the (a) oral and (b) intravenous routes. The strategy is exemplified by a palmitic ester prodrug of the model drug leucine(5)-enkephalin, encapsulated within chitosan amphiphile nanoparticles. Via the oral route the nanoparticle-prodrug formulation increased the brain drug levels by 67% and significantly increased leucine(5)-enkephalin's antinociceptive activity. The nanoparticles facilitate oral absorption and the prodrug prevents plasma degradation, enabling brain delivery. Via the intravenous route, the nanoparticle-prodrug increases the peptide brain levels by 50% and confers antinociceptive activity on leucine(5)-enkephalin. The nanoparticle-prodrug enables brain delivery by stabilizing the peptide in the plasma although the chitosan amphiphile particles are not transported across the blood-brain barrier per se, and are excreted in the urine.Peer reviewe

    Nanofiber-based delivery of therapeutic peptides to the brain

    No full text
    The delivery of therapeutic peptides and proteins to the central nervous system is the biggest challenge when developing effective neuropharmaceuticals. The central issue is that the blood-brain barrier is impermeable to most molecules. Here we demonstrate the concept of employing an amphiphilic derivative of a peptide to deliver the peptide into the brain. The key to success is that the amphiphilic peptide should by design self-assemble into nanofibers wherein the active peptide epitope is tightly wrapped around the nanofiber core. The nanofiber form appears to protect the amphiphilic peptide from degradation while in the plasma, and the amphiphilic nature of the peptide promotes its transport across the blood-brain barrier. Therapeutic brain levels of the amphiphilic peptide are achieved with this strategy, compared with the absence of detectable peptide in the brain and the consequent lack of a therapeutic response when the underivatized peptide is administered
    corecore