7 research outputs found

    Initial Feasibility and Clinical Implementation of Daily MR-Guided Adaptive Head and Neck Cancer Radiation Therapy on a 1.5T MR-Linac System: Prospective R-IDEAL 2a/2b Systematic Clinical Evaluation of Technical Innovation

    Get PDF
    Purpose: This prospective study is, to our knowledge, the first report of daily adaptive radiation therapy (ART) for head and neck cancer (HNC) using a 1.5T magnetic resonance imaging-linear accelerator (MR-linac) with particular focus on safety and feasibility and dosimetric results of an online rigid registration-based adapt to position (ATP) workflow. Methods and Materials: Ten patients with HNC received daily ART on a 1.5T/7MV MR-linac, 6 using ATP only and 4 using ATP with 1 offline adapt-to-shape replan. Setup variability with custom immobilization masks was assessed by calculating the mean systematic error (M), standard deviation of the systematic error (Σ), and standard deviation of the random error (σ) of the isocenter shifts. Quality assurance was performed with a cylindrical diode array using 3%/3 mm γ criteria. Adaptive treatment plans were summed for each patient to compare the delivered dose with the planned dose from the reference plan. The impact of dosimetric variability between adaptive fractions on the summation plan doses was assessed by tracking the number of optimization constraint violations at each individual fraction. Results: The random errors (mm) for the x, y, and z isocenter shifts, respectively, were M = –0.3, 0.7, 0.1; Σ = 3.3, 2.6, 1.4; and σ = 1.7, 2.9, 1.0. The median (range) γ pass rate was 99.9% (90.9%-100%). The differences between the reference and summation plan doses were –0.61% to 1.78% for the clinical target volume and –11.74% to 8.11% for organs at risk (OARs), although an increase greater than 2% in OAR dose only occurred in 3 cases, each for a single OAR. All cases had at least 2 fractions with 1 or more constraint violations. However, in nearly all instances, constraints were still met in the summation plan despite multiple single-fraction violations. Conclusions: Daily ART on a 1.5T MR-linac using an online ATP workflow is safe and clinically feasible for HNC and results in delivered doses consistent with planned doses

    Automatic registration of 2D MR cine images for swallowing motion estimation.

    No full text
    PurposeTo automate the estimation of swallowing motion from 2D MR cine images using deformable registration for future applications of personalized margin reduction in head and neck radiotherapy and outcome assessment of radiation-associated dysphagia.MethodsTwenty-one patients with serial 2D FSPGR-MR cine scans of the head and neck conducted through the course of definitive radiotherapy for oropharyngeal cancer. Included patients had at least one cine scan before, during, or after radiotherapy, with a total of 52 cine scans. Contours of 7 swallowing related regions-of-interest (ROIs), including pharyngeal constrictor, epiglottis, base of tongue, geniohyoid, hyoid, soft palate, and larynx, were manually delineated from consecutive frames of the cine scan covering at least one swallowing cycle. We applied a modified thin-plate-spline robust-point-matching algorithm to register the point sets of each ROI automatically over frames. The deformation vector fields from the registration were then used to estimate the motion during swallowing for each ROI. Registration errors were estimated by comparing the deformed contours with the manual contours.ResultsOn average 22 frames of each cine scan were contoured. The registration for one cine scan (7 ROIs over 22 frames) on average took roughly 22 minutes. A number of 8018 registrations were successfully batch processed without human interaction after the contours were drawn. The average registration error for all ROIs and all patients was 0.36 mm (range: 0.06 mm- 2.06 mm). Larynx had the average largest motion in superior direction of all structures under consideration (range: 0.0 mm- 58.7 mm). Geniohyoid had the smallest overall motion of all ROIs under consideration and the superior-inferior motion was larger than the anterior-posterior motion for all ROIs.ConclusionWe developed and validated a deformable registration framework to automate the estimation of swallowing motion from 2D MR cine scans
    corecore