57 research outputs found

    Stability of spin-0 graviton and strong coupling in Horava-Lifshitz theory of gravity

    Full text link
    In this paper, we consider two different issues, stability and strong coupling, raised lately in the newly-proposed Horava-Lifshitz (HL) theory of quantum gravity with projectability condition. We find that all the scalar modes are stable in the de Sitter background, due to two different kinds of effects, one from high-order derivatives of the spacetime curvature, and the other from the exponential expansion of the de Sitter space. Combining these effects properly, one can make the instability found in the Minkowski background never appear even for small-scale modes, provided that the IR limit is sufficiently closed to the relativistic fixed point. At the fixed point, all the modes become stabilized. We also show that the instability of Minkowski spacetime can be cured by introducing mass to the spin-0 graviton. The strong coupling problem is investigated following the effective field theory approach, and found that it cannot be cured by the Blas-Pujolas-Sibiryakov mechanism, initially designed for the case without projectability condition, but might be circumvented by the Vainshtein mechanism, due to the non-linear effects. In fact, we construct a class of exact solutions, and show explicitly that it reduces smoothly to the de Sitter spacetime in the relativistic limit.Comment: Some points regarding to strong coupling are further clarified, and typos corrected. revtex4, 9 figures. Version to appear in Physical Reviews

    Age, anticoagulants, hypertension and cardiovascular genetic traits predict cranial ischaemic complications in patients with giant cell arteritis

    Get PDF
    \ua9 Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ on behalf of EULAR.Objectives: This project aimed to determine whether cranial ischaemic complications at the presentation of giant cell arteritis (GCA) were associated with pre-existing cardiovascular (CV) risk factors, CV disease or genetic risk of CV-related traits. Methods: 1946 GCA patients with clinicodemographic data at GCA presentation were included. Associations between pre-existing CV-related traits (including Polygenic Risk Scores (PRS) for CV traits) and cranial ischaemic complications were tested. A model for cranial ischaemic complications was optimised using an elastic net approach. Positional gene mapping of associated PRS was performed to improve biological understanding. Results: In a sample of 1946 GCA patients (median age=71, 68.7% female), 17% had cranial ischaemic complications at presentation. In univariable analyses, 10 variables were associated with complications (likelihood-ratio test p≤0.05). In multivariable analysis, the two variables with the strongest effects, with or without PRS in the model, were anticoagulant therapy (adjusted OR (95% CI)=0.21 (0.05 to 0.62), p=4.95 710-3) and age (adjusted OR (95% CI)=1.60 (0.73 to 3.66), p=2.52 710-3, for ≥80 years versus <60 years). In sensitivity analyses omitting anticoagulant therapy from multivariable analysis, age and hypertension were associated with cranial ischaemic complications at presentation (hypertension: adjusted OR (95% CI)=1.35 (1.03 to 1.75), p=0.03). Positional gene mapping of an associated transient ischaemic attack PRS identified TEK, CD96 and MROH9 loci. Conclusion: Age and hypertension were risk factors for cranial ischaemic complications at GCA presentation, but in this dataset, anticoagulation appeared protective. Positional gene mapping suggested a role for immune and coagulation-related pathways in the pathogenesis of complications. Further studies are needed before implementation in clinical practice
    corecore