787 research outputs found

    Phenomemology of a Realistic Accelerating Universe Using Tracker Fields

    Full text link
    We present a realistic scenario of tracking of scalar fields with varying equation of state. The astrophysical constraints on the evolution of scalar fields in the physical universe are discussed. The nucleosynthesis and the galaxy formation constraints have been used to put limits on Ωϕ\Omega_\phi and estimate ϵ\epsilon during cosmic evolution. Interpolation techniques have been applied to estimate ϵ0.772\epsilon\simeq0.772 at the present epoch. The epoch of transition from matter to quintessence dominated era and consequent onset of acceleration in cosmic expansion is calculated and taking the lower limit Ωn0=0.2\Omega_n^0 = 0.2 as estimated from SNeIaSN_e I_a data, it is shown that the supernova observations beyond redshift z=1z=1 would reveal deceleration in cosmic expansion.Comment: 10 pages, 4 figures, late

    Genesis of Dark Energy: Dark Energy as Consequence of Release and Two-stage Tracking Cosmological Nuclear Energy

    Full text link
    Recent observations on Type-Ia supernovae and low density (Ωm=0.3\Omega_{m} = 0.3) measurement of matter including dark matter suggest that the present-day universe consists mainly of repulsive-gravity type `exotic matter' with negative-pressure often said `dark energy' (Ωx=0.7\Omega_{x} = 0.7). But the nature of dark energy is mysterious and its puzzling questions, such as why, how, where and when about the dark energy, are intriguing. In the present paper the authors attempt to answer these questions while making an effort to reveal the genesis of dark energy and suggest that `the cosmological nuclear binding energy liberated during primordial nucleo-synthesis remains trapped for a long time and then is released free which manifests itself as dark energy in the universe'. It is also explained why for dark energy the parameter w=2/3w = - {2/3}. Noting that w=1 w = 1 for stiff matter and w=1/3w = {1/3} for radiation; w=2/3w = - {2/3} is for dark energy because "1""-1" is due to `deficiency of stiff-nuclear-matter' and that this binding energy is ultimately released as `radiation' contributing "+1/3""+ {1/3}", making w=1+1/3=2/3w = -1 + {1/3} = - {2/3}. When dark energy is released free at Z=80Z = 80, w=2/3w = -{2/3}. But as on present day at Z=0Z = 0 when radiation strength has diminished to δ0\delta \to 0, w=1+δ1/3=1w = -1 + \delta{1/3} = - 1. This, thus almost solves the dark-energy mystery of negative pressure and repulsive-gravity. The proposed theory makes several estimates /predictions which agree reasonably well with the astrophysical constraints and observations. Though there are many candidate-theories, the proposed model of this paper presents an entirely new approach (cosmological nuclear energy) as a possible candidate for dark energy.Comment: 17 pages, 4 figures, minor correction

    Parametrization of dark energy equation of state Revisited

    Full text link
    A comparative study of various parametrizations of the dark energy equation of state is made. Astrophysical constraints from LSS, CMB and BBN are laid down to test the physical viability and cosmological compatibility of these parametrizations. A critical evaluation of the 4-index parametrizations reveals that Hannestad-M\"{o}rtsell as well as Lee parametrizations are simple and transparent in probing the evolution of the dark energy during the expansion history of the universe and they satisfy the LSS, CMB and BBN constraints on the dark energy density parameter for the best fit values.Comment: 11 page

    The Genesis of Cosmological Tracker Fields

    Get PDF
    The role of the quintessence field as a probable candidate for the repulsive dark energy, the conditions for tracking and the requisites for tracker fields are examined. The concept of `integrated tracking' is introduced and a new criterion for the existence of tracker potentials is derived assuming monotonic increase in the scalar energy density parameter \Omega_\phi with the evolution of the universe as suggested by the astrophysical constraints. It provides a technique to investigate generic potentials of the tracker fields. The general properties of the tracker fields are discussed and their behaviour with respect to tracking parameter \epsilon is analyzed. It is shown that the tracker fields around the limiting value \epsilon \simeq \frac 23 give the best fit with the observational constraints.Comment: 8 pages, Latex file, 1 figure, comments adde

    CMBR Constraint on a Modified Chaplygin Gas Model

    Full text link
    In this paper, a modified Chaplygin gas model of unifying dark energy and dark matter with exotic equation of state p=BρAραp=B\rho-\frac{A}{\rho^{\alpha}} which can also explain the recent accelerated expansion of the universe is investigated by the means of constraining the location of the peak of the CMBR spectrum. We find that the result of CMBR measurements does not exclude the nonzero value of parameter BB, but allows it in the range 0.35B0.025-0.35\lesssim B\lesssim0.025.Comment: 4 pages, 3 figure

    Accretion Processes for General Spherically Symmetric Compact Objects

    Get PDF
    We investigate the accretion process for different spherically symmetric space-time geometries for a static fluid. We analyse this procedure using the most general black hole metric ansatz. After that, we examine the accretion process for specific spherically symmetric metrics obtaining the velocity of the sound during the process and the critical speed of the flow of the fluid around the black hole. In addition, we study the behaviour of the rate of change of the mass for each chosen metric for a barotropic fluid.Comment: 10 pages, 15 figures, v2 accepted for publication in 'European Physical Journal C

    Probing the geometry of the Laughlin state

    Get PDF
    It has recently been pointed out that phases of matter with intrinsic topological order, like the fractional quantum Hall states, have an extra dynamical degree of freedom that corresponds to quantum geometry. Here we perform extensive numerical studies of the geometric degree of freedom for the simplest example of fractional quantum Hall states—the filling ν=1/3\nu =1/3 Laughlin state. We perturb the system by a smooth, spatially dependent metric deformation and measure the response of the Hall fluid, finding it to be proportional to the Gaussian curvature of the metric. Further, we generalize the concept of coherent states to formulate the bulk off-diagonal long range order for the Laughlin state, and compute the deformations of the metric in the vicinity of the edge of the system. We introduce a \u27pair amplitude\u27 operator and show that it can be used to numerically determine the intrinsic metric of the Laughlin state. These various probes are applied to several experimentally relevant settings that can expose the quantum geometry of the Laughlin state, in particular to systems with mass anisotropy and in the presence of an electric field gradient
    corecore