4,788 research outputs found

    Stellar Winds on the Main-Sequence II: the Evolution of Rotation and Winds

    Full text link
    Aims: We study the evolution of stellar rotation and wind properties for low-mass main-sequence stars. Our aim is to use rotational evolution models to constrain the mass loss rates in stellar winds and to predict how their properties evolve with time on the main-sequence. Methods: We construct a rotational evolution model that is driven by observed rotational distributions of young stellar clusters. Fitting the free parameters in our model allows us to predict how wind mass loss rate depends on stellar mass, radius, and rotation. We couple the results to the wind model developed in Paper I of this series to predict how wind properties evolve on the main-sequence. Results: We estimate that wind mass loss rate scales with stellar parameters as M˙R2Ω1.33M3.36\dot{M}_\star \propto R_\star^2 \Omega_\star^{1.33} M_\star^{-3.36}. We estimate that at young ages, the solar wind likely had a mass loss rate that is an order of magnitude higher than that of the current solar wind. This leads to the wind having a higher density at younger ages; however, the magnitude of this change depends strongly on how we scale wind temperature. Due to the spread in rotation rates, young stars show a large range of wind properties at a given age. This spread in wind properties disappears as the stars age. Conclusions: There is a large uncertainty in our knowledge of the evolution of stellar winds on the main-sequence, due both to our lack of knowledge of stellar winds and the large spread in rotation rates at young ages. Given the sensitivity of planetary atmospheres to stellar wind and radiation conditions, these uncertainties can be significant for our understanding of the evolution of planetary environments.Comment: 26 pages, 14 figures, 2 tables, to be published in A&

    Stellar Winds on the Main-Sequence I: Wind Model

    Full text link
    Aims: We develop a method for estimating the properties of stellar winds for low-mass main-sequence stars between masses of 0.4 and 1.1 solar masses at a range of distances from the star. Methods: We use 1D thermal pressure driven hydrodynamic wind models run using the Versatile Advection Code. Using in situ measurements of the solar wind, we produce models for the slow and fast components of the solar wind. We consider two radically different methods for scaling the base temperature of the wind to other stars: in Model A, we assume that wind temperatures are fundamentally linked to coronal temperatures, and in Model B, we assume that the sound speed at the base of the wind is a fixed fraction of the escape velocity. In Paper II of this series, we use observationally constrained rotational evolution models to derive wind mass loss rates. Results: Our model for the solar wind provides an excellent description of the real solar wind far from the solar surface, but is unrealistic within the solar corona. We run a grid of 1200 wind models to derive relations for the wind properties as a function of stellar mass, radius, and wind temperature. Using these results, we explore how wind properties depend on stellar mass and rotation. Conclusions: Based on our two assumptions about the scaling of the wind temperature, we argue that there is still significant uncertainty in how these properties should be determined. Resolution of this uncertainty will probably require both the application of solar wind physics to other stars and detailed observational constraints on the properties of stellar winds. In the final section of this paper, we give step by step instructions for how to apply our results to calculate the stellar wind conditions far from the stellar surface.Comment: 24 pages, 13 figures, 2 tables, Accepted for publication in A&

    Stellar activity and planetary atmosphere evolution in tight binary star systems

    Full text link
    Context. In tight binary star systems, tidal interactions can significantly influence the rotational and orbital evolution of both stars, and therefore their activity evolution. This can have strong effects on the atmospheric evolution of planets that are orbiting the two stars. Aims. In this paper, we aim to study the evolution of stellar rotation and of X-ray and ultraviolet (XUV) radiation in tight binary systems consisting of two solar mass stars and use our results to study planetary atmosphere evolution in the habitable zones of these systems. Methods. We have applied a rotation model developed for single stars to binary systems, taking into account the effects of tidal interactions on the rotational and orbital evolution of both stars. We used empirical rotation-activity relations to predict XUV evolution tracks for the stars, which we used to model hydrodynamic escape of hydrogen dominated atmospheres. Results. When significant, tidal interactions increase the total amount of XUV energy emitted, and in the most extreme cases by up to factor of \sim50. We find that in the systems that we study, habitable zone planets with masses of 1~M_\oplus can lose huge hydrogen atmospheres due to the extended high levels of XUV emission, and the time that is needed to lose these atmospheres depends on the binary orbital separation.For some orbital separations, and when the stars are born as rapid rotators, it is also possible for tidal interactions to protect atmospheres from erosion by quickly spinning down the stars. For very small orbital separations, the loss of orbital angular momentum by stellar winds causes the two stars to merge. We suggest that the merging of the two stars could cause previously frozen planets to become habitable due to the habitable zone boundaries moving outwards.Comment: Accepted for publication by A&

    The origin of organic emission in NGC 2071

    Get PDF
    Context: The physical origin behind organic emission in embedded low-mass star formation has been fiercely debated in the last two decades. A multitude of scenarios have been proposed, from a hot corino to PDRs on cavity walls to shock excitation. Aims: The aim of this paper is to determine the location and the corresponding physical conditions of the gas responsible for organics emission lines. The outflows around the small protocluster NGC 2071 are an ideal testbed to differentiate between various scenarios. Methods: Using Herschel-HIFI and the SMA, observations of CH3OH, H2CO and CH3CN emission lines over a wide range of excitation energies were obtained. Comparisons to a grid of radiative transfer models provide constraints on the physical conditions. Comparison to H2O line shape is able to trace gas-phase synthesis versus a sputtered origin. Results: Emission of organics originates in three spots: the continuum sources IRS 1 ('B') and IRS 3 ('A') as well as a outflow position ('F'). Densities are above 107^7 cm3^{-3} and temperatures between 100 to 200 K. CH3OH emission observed with HIFI originates in all three regions and cannot be associated with a single region. Very little organic emission originates outside of these regions. Conclusions: Although the three regions are small (<1,500 AU), gas-phase organics likely originate from sputtering of ices due to outflow activity. The derived high densities (>107^7 cm3^{-3}) are likely a requirement for organic molecules to survive from being destroyed by shock products. The lack of spatially extended emission confirms that organic molecules cannot (re)form through gas-phase synthesis, as opposed to H2O, which shows strong line wing emission. The lack of CH3CN emission at 'F' is evidence for a different history of ice processing due to the absence of a protostar at that location and recent ice mantle evaporation.Comment: 10 Pages, 8 figures, Accepted for Astronomy and Astrophysic

    The Athletic Profile of Fast Bowling in Cricket : A Review

    Get PDF
    Cricket is a global sport played in over 100 countries with elite performers attracting multimillion dollar contracts. Therefore, performers maintaining optimum physical fitness and remaining injury free is important. Fast bowlers have a vital position in a cricket team, and there is an increasing body of scientific literature that has reviewed this role over the past decade. Previous research on fast bowlers has tended to focus on biomechanical analysis and injury prevention in performers. However, this review aims to critically analyze the emerging contribution of physiological-based literature linked to fast bowling in cricket, highlight the current evidence related to simulated and competitive in-match performance, and relate this practically to the conditioning coach. Furthermore, the review considers limitations with past research and possible avenues for future investigation. It is clear with the advent of new applied mobile monitoring technology that there is scope for more ecologically valid and longitudinal exploration capturing in-match data, providing quantification of physiological workloads, and analysis of the physical demands across the differing formats of the game. Currently, strength and conditioning specialists do not have a critical academic resource with which to shape professional practice, and this review aims to provide a starting point for evidence in the specific areaPeer reviewedFinal Accepted Versio

    Effect of the beam-beam interactions on the dynamic aperture of the LHC at collision

    Get PDF
    The dynamic aperture of the LHC at collision energy is limited by the field errors in the IR quadrupoles being built at FNAL and KEK. The 300 mu rad crossing angle, incorporated in the design to reduce the effect of the long-range beam beam interactions, enhances the effect of the multipoles on the dynamic aperture. We have investigated the possibility of a different crossing angle with a more accurate modelling of the long-range interactions. Tune scans have been done to determine if a better choice of the tunes exists. (7 refs)
    corecore