4 research outputs found

    Detection and Profiling of Antibiotic Resistance among Culturable Bacterial Isolates in Vended Food and Soil Samples

    No full text
    The emergence and persistence of antibiotic resistance remain formidable health challenges. This study aimed at detecting and profiling antibiotic resistance of bacterial contaminants in vended food and the environment. Seventy antibiotic-resistant bacterial isolates were isolated from fried fish, African sausages, roasted meat, smokies, samosa, chips (potato fries), vegetable salads, and soil samples collected from Embu Town and Kangaru Market in Embu County, Kenya. The antibiotic susceptibility test, morphological and biochemical characterization, antibiosis assay, polymerase chain reaction-based detection of antibiotic resistance genes, and sequencing of the 16S rRNA gene were done. Analysis of variance on all measured data was done, and Tukey’s honest test was used to compare and separate mean diameters of zones inhibition. Resistance of bacterial isolates to antibiotics was chloramphenicol (90%), cefotaxime (84.29%), nalidixic acid (81.43%), tetracycline (77.14%), amoxicillin (72.86%), gentamycin (48.57%), streptomycin (32.86%), and trimethoprim + sulphamethoxazole (30%). Isolate KMP337, Salmonella spp., exhibited highly significant antibiosis against S. aureus recording a mean inhibition diameter and standard error (SE) of 16.33 ± 0.88 mm, respectively, at P=0.001. The 70 bacterial isolates belonged to Bacillus, Paraclostridium, Lysinibacillus, Virgibacillus, and Serratia genera. The study isolated Bacillus wiedmannii (KC75) which is a risk group 2 as well as Serratia marcescens (KMP95) and Bacillus anthracis (KS606) which are risk group 3 organisms. The presence of antibiotic resistance genes Tet A, BlaTEM, StrB, Dfr A, Amp, and FloR genes was confirmed by a polymerase chain reaction. Samples from Kangaru Market recorded a higher (88.57%) proportion of resistant isolates as compared to isolates from Embu Town (11.43%). The study confirmed the presence of antibiotic-resistant bacteria in vended fast food and the soil in Embu Town and Kangaru Market. This study calls for continuous monitoring of bacterial status and hygienic handling of vended food

    Agro-Morphological Characterization of Kenyan Slender Leaf (Crotalaria brevidens and C. ochroleuca) Accessions

    No full text
    Slender leaf (Crotalaria spp) is among the indigenous and underutilized vegetables in Kenya whose production is limited to the Western and Coastal regions of the country. For a long time, this crop has been neglected in terms of research and genetic improvement. There is therefore scanty information on its morphological diversity and agronomic performance, hence the need for this study. Field experiments were carried out for two seasons in October to December 2018 and March to May 2019. The experiments were laid out in Randomized Complete Block Design with 29 accessions and replicated three times. Both qualitative and quantitative data were recorded from the accessions based on the Crotalaria descriptors. Quantitative data were subjected to analysis of variance using XLSTAT Version 2019, and accession means were separated using Student’s Newman Keuls test at 95% level of confidence. Both qualitative and quantitative data were subjected to multivariate cluster analysis, and a dendrogram was constructed using the unweighted pair-group method with arithmetic average. The principal component analysis was conducted to obtain information on the importance of the characters. Significant variation in agro-morphological traits was found within and between the two species. Cluster analysis grouped the accessions into seven major classes with a between-classes diversity of 75.13% and a within-classes diversity of 24.87%. This study sets the basis for genetic improvement of slender leaf in Kenya since the observed diversity can be exploited in selection for intraspecific and interspecific hybridization

    INCiTiS-FOOD. Experimental data to evaluate Growth, Yield and Bioactive Compounds of Ethiopian Kale (Brassica carinata A. Braun) Microgreens under Different LED Light Spectra and Substrates

    No full text
    Dataset related to the article “Evaluation of Growth, Yield and Bioactive Compounds of Ethiopian Kale (Brassica carinata A. Braun) Microgreens under Different LED Light Spectra and Substrates” (published in 2024 in “Horticulturae”, DOI: 10.3390/horticulturae10050436). The dataset contains experimental results associated with the publication, including yield, plant height, leaf area, canopy cover, carotenoid and flavonoid contents, total amount of chlorophyll nitrate content. The data were generated in the framework of the Horizon Europe project INCiTiS-FOOD

    Witchweed’s Suicidal Germination: Can Slenderleaf Help?

    No full text
    The parasitic plant Striga hermonthica (Delile) Benth. is stimulated to germinate by biomolecules (strigolactones) produced in the roots of host and some non-host plants. Non-hosts induce Striga’s suicidal germination and are therefore used as trap crops. Among trap crops, the Slenderleaf legume in the genus Crotalaria (Crotalaria brevidens (L.) Benth.) and (Crotalaria orchroleuca (G.) Don.) has been popularized in African smallholder farms. However, the Striga germination efficiency of these locally grown Crotalaria varieties (landraces) is unknown. Also unclear is Crotolaria’s extent to inhibiting Striga growth, post germination. Extensive parasite penetration can expose the trap crop to secondary infections and possible phytotoxicity from Striga. We used in vitro germination assays to determine the Striga germination efficiency of 29 Crotalaria landraces. Furthermore, we determined Crotalaria’s ability to inhibit Striga attachment and growth using histological analysis. We found that: i) Crotalaria stimulated germination of Striga seeds at frequencies ranging between 15.5% and 54.5% compared to 74.2% stimulation by the synthetic strigolactone (GR24) used a positive control; ii) Crotalaria blocked Striga entry at multiple levels and did not allow growth beyond the pericycle, effectively blocking vascular connection with the non-host. Hence, Crotalaria is suitable as a trap crop in integrated Striga management
    corecore