1,350 research outputs found

    An Extinction Threshold for Protostellar Cores in Ophiuchus

    Full text link
    We have observed continuum emission at lambda = 850 microns over ~4 square degrees of the Ophiuchus star-forming cloud using SCUBA on the JCMT, producing a submillimetre continuum map twenty times larger than previous Ophiuchus surveys. Our sensitivity is 40 mJ/beam, a factor of ~2 less sensitive than earlier maps. Using an automated identification algorithm, we detect 100 candidate objects. Only two new objects are detected outside the boundary of previous maps, despite the much wider area surveyed. We compare the submillimetre continuum map with a map of visual extinction across the Ophiuchus cloud derived using a combination of 2MASS and R-band data. The total mass in submillimetre objects is ~ 50 Msun compared with ~ 2000 Msun in observed cloud mass estimated from the extinction. The submillimetre objects represent only 2.5% of the cloud mass. A clear association is seen between the locations of detected submillimetre objects and high visual extinction, with no objects detected at A_V<7 magnitudes. Using the extinction map, we estimate pressures within the cloud from P/k ~2x10^5 cm^-3 K in the less-extincted regions to P/k ~2x10^6 cm^-3 K at the cloud centre. Given our sensitivities, cold (T_d ~15K) clumps supported by thermal pressure, had they existed, should have been detected throughout the majority of the map. Such objects may not be present at low A_V because they may form only where A_V > 15, by some mechanism (e.g., loss of non-thermal support).Comment: 12 pages, 1 figure. Accepted by Astrophysical Journal Letter

    Indiana Geology as it Influences Engineering Projects

    Get PDF

    Assessment of shoulder active range of motion in prone versus supine:A reliability and concurrent validity study

    Get PDF
    Background: As swimming and surfing are prone dominant sports, it would be more sport specific to assess shoulder active range of motion in this position. Objectives: To determine the reliability of the inclinometer and HALO© for assessing shoulder active range of motion in supine and prone and the concurrent validity of the HALO©. Concurrent validity is based on the comparison of the HALO© and inclinometer. To determine if active range of motion (AROM) differences exists between prone and supine when assessing shoulder internal (IR) and external rotation (ER). Design: The design included clinical measurement, reliability and validity. Methods: Thirty shoulders (mean age = 26.8 years) without pathology were evaluated. Measurements were taken in supine and prone with both an inclinometer and HALO© device. Results: Active ER ROM in prone was significantly higher than in supine when using both devices. Intra-rater reliability (within and between session) intraclass correlation coefficient (ICC) values ranged between 0.82–0.99 for both devices in supine and prone. An ICC test revealed a significant (p \u3c 0.01) correlation for both devices in IR and ER movements (ICC3,1 = 0.87 and ICC3,1 = 0.72), respectively. Conclusion: This study has shown prone assessment of active ER and IR ROM to be a reliable and appropriate method for prone dominant athletes (swimmers and surfers). In this study greater ER ROM was achieved in prone compared to supine. This finding highlights the importance of standardizing the test position for initial and follow up assessments. Furthermore the HALO© and inclinometer have been shown to be reliable tools that show good concurrent validity

    Accelerator performance analysis of the Fermilab Muon Campus

    Full text link
    Fermilab is dedicated to hosting world-class experiments in search of new physics that will operate in the coming years. The Muon g-2 Experiment is one such experiment that will determine with unprecedented precision the muon anomalous magnetic moment, which offers an important test of the Standard Model. We describe in this study the accelerator facility that will deliver a muon beam to this experiment. We first present the lattice design that allows for efficient capture, transport, and delivery of polarized muon beams. We then numerically examine its performance by simulating pion production in the target, muon collection by the downstream beam line optics, as well as transport of muon polarization. We finally establish the conditions required for the safe removal of unwanted secondary particles that minimizes contamination of the final beam.Comment: 10 p

    Correlating Infall with Deuterium Fractionation in Dense Cores

    Full text link
    We present a survey of HCO+ (3-2) observations pointed towards dense cores with previous measurements of N(N2D+)/N(N2H+). Of the 26 cores in this survey, five show the spectroscopic signature of outward motion, nine exhibit neither inward nor outward motion, eleven appear to be infalling, and one is not detected. We compare the degree of deuterium fractionation with infall velocities calculated from the HCO+ spectra and find that those cores with [D]/[H] > 0.1 are more likely to have the signature of inward motions than cores with smaller [D]/[H] ratios. Infall motions are also much more common in cores with masses exceeding their thermal Jeans masses. The fastest infall velocity measured belongs to one of the two protostellar cores in our survey, L1521F, and the observed motions are typically on the order of the sound speed.Comment: Accepted to Ap

    The Athletic Profile of Fast Bowling in Cricket : A Review

    Get PDF
    Cricket is a global sport played in over 100 countries with elite performers attracting multimillion dollar contracts. Therefore, performers maintaining optimum physical fitness and remaining injury free is important. Fast bowlers have a vital position in a cricket team, and there is an increasing body of scientific literature that has reviewed this role over the past decade. Previous research on fast bowlers has tended to focus on biomechanical analysis and injury prevention in performers. However, this review aims to critically analyze the emerging contribution of physiological-based literature linked to fast bowling in cricket, highlight the current evidence related to simulated and competitive in-match performance, and relate this practically to the conditioning coach. Furthermore, the review considers limitations with past research and possible avenues for future investigation. It is clear with the advent of new applied mobile monitoring technology that there is scope for more ecologically valid and longitudinal exploration capturing in-match data, providing quantification of physiological workloads, and analysis of the physical demands across the differing formats of the game. Currently, strength and conditioning specialists do not have a critical academic resource with which to shape professional practice, and this review aims to provide a starting point for evidence in the specific areaPeer reviewedFinal Accepted Versio
    corecore