20,363 research outputs found

    Application of Remote Sensing Techniques for Appraising Changes in Wildlife Habitat

    Get PDF
    An attempt was made to investigate the potential of airborne, multispectral, line scanner data acquisition and computer-implemented automatic recognition techniques for providing useful information about waterfowl breeding habitat in North Dakota. The spectral characteristics of the components of a landscape containing waterfowl habitat can be detected with airborne scanners. By analyzing these spectral characteristics it is possible to identify and map the landscape components through analog and digital processing methods. At the present stage of development multispectral remote sensing techniques are not ready for operational application to surveys of migratory bird habitat and other such resources. Further developments are needed to: (1) increase accuracy; (2) decrease retrieval and processing time; and (3) reduce costs

    Determination of the gaseous hydrogen ductile-brittle transition in copper-nickel alloys

    Get PDF
    A series of copper-nickel alloys were fabricated, notched tensile specimens machined for each alloy, and the specimens tested in 34.5 MPa hydrogen and in air. A notched tensile ratio was determined for each alloy and the hydrogen environment embrittlement (HEE) determined for the alloys of 47.7 weight percent nickel to 73.5 weight percent nickel. Stacking fault probability and stacking fault energies were determined for each alloy using the x ray diffraction line shift and line profiles technique. Hydrogen environment embrittlement was determined to be influenced by stacking fault energies; however, the correlation is believed to be indirect and only partially responsible for the HEE behavior of these alloys

    Power system applications of fiber optics

    Get PDF
    Power system applications of optical systems, primarily using fiber optics, are reviewed. The first section reviews fibers as components of communication systems. The second section deals with fiber sensors for power systems, reviewing the many ways light sources and fibers can be combined to make measurements. Methods of measuring electric field gradient are discussed. Optical data processing is the subject of the third section, which begins by reviewing some widely different examples and concludes by outlining some potential applications in power systems: fault location in transformers, optical switching for light fired thyristors and fault detection based on the inherent symmetry of most power apparatus. The fourth and final section is concerned with using optical fibers to transmit power to electric equipment in a high voltage situation, potentially replacing expensive high voltage low power transformers. JPL has designed small photodiodes specifically for this purpose, and fabricated and tested several samples. This work is described

    Enhanced quasiparticle heat conduction of the multigap superconductor Lu2Fe3Si5

    Full text link
    The thermal transport measurements have been made on the Fe-based superconductor Lu2Fe3Si5 (Tc ~ 6 K) down to a very low temperature Tc/120. The field and temperature dependences of the thermal conductivity confirm the multigap superconductivity with fully opened gaps on the whole Fermi surfaces. In comparison to MgB2 as a typical example of the multigap superconductor in a p-electron system, Lu2Fe3Si5 reveals a remarkably enhanced quasiparticle heat conduction in the mixed state. The results can be interpreted as a consequence of the electronic correlations derived from Fe 3d-electrons.Comment: 5 pages, 4 figure

    Assessment of flying-quality criteria for air-breathing aerospacecraft

    Get PDF
    A study of flying quality requirements for air breathing aerospacecraft gives special emphasis to the unusual operational requirements and characteristics of these aircraft, including operation at hypersonic speed. The report considers distinguishing characteristics of these vehicles, including dynamic deficiencies and their implications for control. Particular emphasis is given to the interaction of the airframe and propulsion system, and the requirements for dynamic systems integration. Past operational missions are reviewed to define tasks and maneuvers to be considered for this class of aircraft. Areas of special concern with respect to vehicle dynamics and control are identified. Experience with the space shuttle orbiter is reviewed with respect to flight control system mechanization and flight experience in approach and landing flying qualities for the National Aerospace Plane (NASP)

    B.R. Wells Rice Research Studies 1997

    Get PDF

    B.R. Wells Rice Research Studies 1996

    Get PDF

    B.R. Wells Rice Research Studies 1998

    Get PDF

    Discovery of Five Recycled Pulsars in a High Galactic Latitude Survey

    Get PDF
    We present five recycled pulsars discovered during a 21-cm survey of approximately 4,150 deg^2 between 15 deg and 30 deg from the galactic plane using the Parkes radio telescope. One new pulsar, PSR J1528-3146, has a 61 ms spin period and a massive white dwarf companion. Like many recycled pulsars with heavy companions, the orbital eccentricity is relatively high (~0.0002), consistent with evolutionary models that predict less time for circularization. The four remaining pulsars have short spin periods (3 ms < P < 6 ms); three of these have probable white dwarf binary companions and one (PSR J2010-1323) is isolated. PSR J1600-3053 is relatively bright for its dispersion measure of 52.3 pc cm^-3 and promises good timing precision thanks to an intrinsically narrow feature in its pulse profile, resolvable through coherent dedispersion. In this survey, the recycled pulsar discovery rate was one per four days of telescope time or one per 600 deg^2 of sky. The variability of these sources implies that there are more millisecond pulsars that might be found by repeating this survey.Comment: 15 pages, 3 figures, accepted for publication in Ap

    Perturbation Analysis of Superconductivity in the Trellis-Lattice Hubbard Model

    Full text link
    We investigate pairing symmetry and transition temperature in the trellis-lattice Hubbard model. We solve the \'Eliashberg equation using the third-order perturbation theory with respect to the on-site repulsion UU. We find that a spin-singlet state is very stable in a wide range of parameters. On the other hand, when the electron number density is shifted from the half-filled state and the band gap between two bands is small, a spin-triplet superconductivity is expected. Finally, we discuss a possibility of unconventional superconductivity and pairing symmetry in Sr14−x_{14-x}Cax_xCu24_{24}O41_{41}.Comment: 7pages, 10 figures. To be published in J. Phys. Soc. Jp
    • …
    corecore