34,048 research outputs found

    Changing clinical behaviour by making guidelines specific

    Get PDF
    Efforts to get doctors to follow guidelines have overlooked the importance of clear and concise recommendation

    Computer program calculates the effective temperature for a crystalline solid /DETS/

    Get PDF
    Computer program computes and prints out both the Debye and resulting effective temperatures for each Debye model-dependent average energy per vibrational mode, Debye-Waller factor, and specific heat. The program calculates by the trapezodial rule and then Simpsons rule

    Origin of the transient unpulsed radio emission from the PSR B1259-63 binary system

    Get PDF
    We discuss the interpretation of transient, unpulsed radio emission detected from the unique pulsar/Be-star binary system PSR B1259-63. Extensive monitoring of the 1994 and 1997 periastron passages has shown that the source flares over a 100-day interval around periastron, varying on time-scales as short as a day and peaking at 60 mJy (~100 times the apastron flux density) at 1.4 GHz. Interpreting the emission as synchrotron radiation, we show that (i) the observed variations in flux density are too large to be caused by the shock interaction between the pulsar wind and an isotropic, radiatively driven, Be-star wind, and (ii) the radio emitting electrons do not originate from the pulsar wind. We argue instead that the radio electrons originate from the circumstellar disk of the Be star and are accelerated at two epochs, one before and one after periastron, when the pulsar passes through the disk. A simple model incorporating two epochs of impulsive acceleration followed by synchrotron cooling reproduces the essential features of the radio light curve and spectrum and is consistent with the system geometry inferred from pulsed radio data.Comment: To be published in Astrophysical Journal Letters 7 pages, 1 postscript figur

    Tailed Radio Galaxies as Probes of Cluster Physics in the Square Kilometre Array Era

    Full text link
    In recent years, the use of tailed radio galaxies as environmental probes has gained momentum as a method for galaxy cluster detection, examining the dynamics of individual clusters, measuring the density and velocity flows in the intra-cluster medium, and for probing cluster magnetic fields. To date instrumental limitations in terms of resolution and sensitivity have confined this research to the local (z < 0.7) Universe. The advent of SKA-1 surveys however will allow detection of well over 1 million tailed radio galaxies and their associated galaxy clusters out to redshifts of 2 or more. This is in fact ten times more than the current number of known clusters in the Universe. Such a substantial sample of tailed galaxies will provide an invaluable tool not only for detecting clusters, but also for characterizing their intra-cluster medium, magnetic fields and dynamical state as a function of cosmic time. In this paper we present an analysis of the usability of tailed radio galaxies as tracers of dense environments extrapolated from existing deep radio surveys such the Extended Chandra Deep Field-South.Comment: 4 pages, 2 figures, in URSI GASS (XXXIth) held 16-23 August 2014, Beijing, China. Published as AIP Conference Proceeding

    Hadronic model for radio-to-TeV gamma-ray emission from PSR B1259-63

    Full text link
    We discuss the implications of the recent X-ray and TeV gamma-ray observations of the PSR B1259-63 system (a young rotation powered pulsar orbiting a Be star) for the theoretical models of interaction of pulsar and stellar winds. We show that previously considered models in which the pulsar wind is purely electron loaded have problems to account for the observed behaviour of the system in the TeV and X-ray bands. We develop a model in which the broad band (radio, X-ray and high energy gamma-ray) emission from the binary system is produced in result of collisions of GeV-TeV energy protons accelerated by the pulsar wind and interacting with the stellar disk. In this model the high energy gamma-rays are produced in the decays of secondary neutral pions, while radio and X-ray emission are synchrotron and inverse Compton emission produced by low-energy (< 100 MeV) electrons from the decays of secondary charged pi mesons. This model can explain not only the observed energy spectra, but also the correlations between TeV, X-ray and radio emission components.Comment: Proceeding of "The multi messenger approach to high energy gamma ray sources", Barcelona, June 200
    • …
    corecore