23,860 research outputs found
Optical spectroscopy of GX 339-4 during the high-soft and low-hard states - I
We carried out spectroscopic observations of the candidate black hole binary GX 339−4 during its low–hard and high–soft X-ray states. We have found that the spectrum is dominated by emission lines of neutral elements with asymmetric, round-topped profiles in the low–hard state. In the high–soft state, however, the emission lines from both neutral and ionized elements have unambiguously resolved double-peaked profiles. The detection of double-peaked emission lines in the high–soft state, with a larger peak separation for higher ionization lines, indicates the presence of an irradiatively heated accretion disc. The round-topped lines in the low–hard state are probably caused by a dense matter outflow from an inflated non-Keplerian accretion disc. Our data do not show velocity modulations of the line centres caused by the orbital motion of the compact object, neither do the line basewidths show substantial variations in each observational epoch. There are no detectable absorption lines from the companion star. All these features are consistent with those of a system with a low-mass companion star and low orbital inclination
High-resolution optical and infrared spectroscopic observations of Cir X-1
We present new optical and infrared (IR) observations of Cir X-1 taken near apastron. Both sets of spectra show asymmetric emission lines. Archival optical observations show that an asymmetric Hα emission line has been in evidence for the past 20 years, although the shape of the line has changed significantly. We present an eccentric (e∼0.7–0.9) low-mass binary model, where the system consists of a neutron star orbiting around a (sub)giant companion star of 3–5 M⊙. We suggest that the broad components of the emission lines arise in a high-velocity, optically thick flow near the neutron star, while the narrow components of the optical and the IR lines arise near the companion star and a heated ejecta shell surrounding the binary respectively. In this model, the velocity of the narrow component reflects the space velocity of the binary; the implied radial velocity (+430 km s−1 after correcting for Galactic rotation) is the highest velocity known for an X-ray binary
Decorating Random Quadrangulations
On various regular lattices (simple cubic, body centred cubic..) decorating
an edge with an Ising spin coupled by bonds of strength L to the original
vertex spins and competing with a direct anti-ferromagnetic bond of strength
alpha L can give rise to three transition temperatures for suitable alpha. The
system passes through ferromagnetic, paramagnetic, anti-ferromagnetic and
paramagnetic phases respectively as the temperature is increased.
For the square lattice on the other hand multiple decoration is required to
see this effect. We note here that a single decoration suffices for the Ising
model on planar random quadrangulations (coupled to 2D quantum gravity). Other
random bipartite lattices such as the Penrose tiling are more akin to the
regular square lattice and require multiple decoration to have any affect.Comment: 6 pages + 5 figure
Potts Models with (17) Invisible States on Thin Graphs
The order of a phase transition is usually determined by the nature of the
symmetry breaking at the phase transition point and the dimension of the model
under consideration. For instance, q-state Potts models in two dimensions
display a second order, continuous transition for q = 2,3,4 and first order for
higher q.
Tamura et al recently introduced Potts models with "invisible" states which
contribute to the entropy but not the internal energy and noted that adding
such invisible states could transmute continuous transitions into first order
transitions. This was observed both in a Bragg-Williams type mean-field
calculation and 2D Monte-Carlo simulations. It was suggested that the invisible
state mechanism for transmuting the order of a transition might play a role
where transition orders inconsistent with the usual scheme had been observed.
In this paper we note that an alternative mean-field approach employing
3-regular random ("thin") graphs also displays this change in the order of the
transition as the number of invisible states is varied, although the number of
states required to effect the transmutation, 17 invisible states when there are
2 visible states, is much higher than in the Bragg-Williams case. The
calculation proceeds by using the equivalence of the Potts model with 2 visible
and r invisible states to the Blume-Emery-Griffiths (BEG) model, so a
by-product is the solution of the BEG model on thin random graphs.Comment: (2) Minor typos corrected, references update
Automated Mixed Traffic Vehicle (AMTV) technology and safety study
Technology and safety related to the implementation of an Automated Mixed Traffic Vehicle (AMTV) system are discussed. System concepts and technology status were reviewed and areas where further development is needed are identified. Failure and hazard modes were also analyzed and methods for prevention were suggested. The results presented are intended as a guide for further efforts in AMTV system design and technology development for both near term and long term applications. The AMTV systems discussed include a low speed system, and a hybrid system consisting of low speed sections and high speed sections operating in a semi-guideway. The safety analysis identified hazards that may arise in a properly functioning AMTV system, as well as hardware failure modes. Safety related failure modes were emphasized. A risk assessment was performed in order to create a priority order and significant hazards and failure modes were summarized. Corrective measures were proposed for each hazard
Superconductivity and Physical Properties of CaPd2Ge2 Single Crystals
We present the superconducting and normal state properties of CaPd2Ge2 single
crystal investigated by magnetic susceptibility \chi, isothermal magnetization
M, heat capacity C_p, in-plane electrical resistivity \rho and London
penetration depth \lambda versus temperature T and magnetic field H
measurements. Bulk superconductivity is inferred from the \rho(T) and C_p(T)
data. The \rho(T) data exhibit metallic behavior and undergoes a
superconducting transition with T_c onset = 1.98 K and zero resistivity state
at T_c 0 = 1.67 K. The \chi(T) reveal the onset of superconductivity at 2.0 K.
For T>2.0 K, the \chi(T) and M(H) are weakly anisotropic paramagnetic with
\chi_ab > \chi_c. The C_p(T) confirm the bulk superconductivity below T_c =
1.69(3) K. The superconducting state electronic heat capacity is analyzed
within the framework of a single-band \alpha-model of BCS superconductivity and
various normal and superconducting state parameters are estimated. Within the
\alpha-model, the C_p(T) data and the ab plane \lambda(T) data consistently
indicate a moderately anisotropic s-wave gap with \Delta(0)/k_B T_c ~ 1.6,
somewhat smaller than the BCS value of 1.764. The relationship of the heat
capacity jump at T_c and the penetration depth measurement to the anisotropy in
the s-wave gap is discussed.Comment: 12 pages, 9 figures, 2 Tables; Submitted to PR
- …