12,213 research outputs found
Discovery of Five Recycled Pulsars in a High Galactic Latitude Survey
We present five recycled pulsars discovered during a 21-cm survey of
approximately 4,150 deg^2 between 15 deg and 30 deg from the galactic plane
using the Parkes radio telescope. One new pulsar, PSR J1528-3146, has a 61 ms
spin period and a massive white dwarf companion. Like many recycled pulsars
with heavy companions, the orbital eccentricity is relatively high (~0.0002),
consistent with evolutionary models that predict less time for circularization.
The four remaining pulsars have short spin periods (3 ms < P < 6 ms); three of
these have probable white dwarf binary companions and one (PSR J2010-1323) is
isolated. PSR J1600-3053 is relatively bright for its dispersion measure of
52.3 pc cm^-3 and promises good timing precision thanks to an intrinsically
narrow feature in its pulse profile, resolvable through coherent dedispersion.
In this survey, the recycled pulsar discovery rate was one per four days of
telescope time or one per 600 deg^2 of sky. The variability of these sources
implies that there are more millisecond pulsars that might be found by
repeating this survey.Comment: 15 pages, 3 figures, accepted for publication in Ap
Comparisons of various configurations of the edge delamination test for interlaminar fracture toughness
Various configurations of Edge Delamination Tension (EDT) test specimens, of both brittle (T300/5208) and toughened-matrix (T300/BP907) graphite reinforced composite laminates, were manufactured and tested. The mixed-mode interlaminar fracture toughness, G sub C, was measured using (30/30 sub 2/30/90 sub N)sub s, n=1 or 2, (35/-35/0/90) sub s and (35/0/-35/90) sub s layups designed to delaminate at low tensile strains. Laminates were made without inserts so that delaminations would form naturally between the central 90 deg plies and the adjacent angle plies. Laminates were also made with Teflon inserts implanted between the 90 deg plies and the adjacent angle (theta) plies at the straight edge to obtain a planar fracture surface. In addition, interlaminar tension fracture toughness, GIc, was measured from laminates with the same layup but with inserts in the midplane, between the central 90 deg plies, at the straight edge. All of the EDT configurations were useful for ranking the delamination resistance of composites with different matrix resins. Furthermore, the variety of layups and configurations available yield interlaminar fracture toughness measurements needed to generate delamination failure criteria. The influence of insert thickness and location, and coupon size on G sub c values were evaluated
ARPES studies of cuprate Fermiology: superconductivity, pseudogap, and quasiparticle dynamics
We present angle-resolved photoemission spectroscopy (ARPES) studies of the
cuprate high-temperature superconductors which elucidate the relation between
superconductivity and the pseudogap and highlight low-energy quasiparticle
dynamics in the superconducting state. Our experiments suggest that the
pseudogap and superconducting gap represent distinct states, which coexist
below T. Studies on Bi-2212 demonstrate that the near-nodal and
near-antinodal regions behave differently as a function of temperature and
doping, implying that different orders dominate in different momentum-space
regions. However, the ubiquity of sharp quasiparticles all around the Fermi
surface in Bi-2212 indicates that superconductivity extends into the
momentum-space region dominated by the pseudogap, revealing subtlety in this
dichotomy. In Bi-2201, the temperature dependence of antinodal spectra reveals
particle-hole asymmetry and anomalous spectral broadening, which may constrain
the explanation for the pseudogap. Recognizing that electron-boson coupling is
an important aspect of cuprate physics, we close with a discussion of the
multiple 'kinks' in the nodal dispersion. Understanding these may be important
to establishing which excitations are important to superconductivity.Comment: To appear in a focus issue on 'Fermiology of Cuprates' in New Journal
of Physic
Electronic Structure of Ladder Cuprates
We study the electronic structure of the ladder compounds (SrCa)CuO 14-24-41
and SrCuO 123. LDA calculations for both give similar Cu 3d-bands near the
Fermi energy. The hopping parameters estimated by fitting LDA energy bands show
a strong anisotropy between the t_perp t_par intra-ladder hopping and small
inter-ladder hopping. A downfolding method shows that this anisotropy arises
from the ladder structure.The conductivity perpendicular to the ladders is
computed assuming incoherent tunneling giving a value close to experiment.Comment: 5 pages, 3 figure
Quantum Decoherence of Two Qubits
It is commonly stated that decoherence in open quantum systems is due to
growing entanglement with an environment. In practice, however, surprisingly
often decoherence may equally well be described by random unitary dynamics
without invoking a quantum environment at all. For a single qubit, for
instance, pure decoherence (or phase damping) is always of random unitary type.
Here, we construct a simple example of true quantum decoherence of two qubits:
we present a feasible phase damping channel of which we show that it cannot be
understood in terms of random unitary dynamics. We give a very intuitive
geometrical measure for the positive distance of our channel to the convex set
of random unitary channels and find remarkable agreement with the so-called
Birkhoff defect based on the norm of complete boundedness.Comment: 5 pages, 4 figure
Development of Casbar: a Two-phase Flow Code for the Interior Ballistics Problem
Accurate modelling of gun interior ballistic processes aids in the design and analysis of guns and their propelling charges. Presently, the most accurate modelling of the interior ballistics problem is provided by two-phase, multidimensional computational fluid dynamics (CFD) codes. We present our development of a CFD code, Casbar, which solves a two-phase (gas/particulate) flow problem in axisymmetric geometries. Our model is based on the governing equations for two-phase flow derived from separated flow theory. A finite-volume discretisation of the governing equations is used. The resulting set of equations is solved with a timestep-splitting approach based on the separation of various physical processes. We also present the modelling for the component physics such as propellant combustion and interphase drag. In addition, the solver includes the motion of the projectile and its influence on the flow dynamics. The capabilities of the code are demonstrated with some verification exercises
Characterizing Operations Preserving Separability Measures via Linear Preserver Problems
We use classical results from the theory of linear preserver problems to
characterize operators that send the set of pure states with Schmidt rank no
greater than k back into itself, extending known results characterizing
operators that send separable pure states to separable pure states. We also
provide a new proof of an analogous statement in the multipartite setting. We
use these results to develop a bipartite version of a classical result about
the structure of maps that preserve rank-1 operators and then characterize the
isometries for two families of norms that have recently been studied in quantum
information theory. We see in particular that for k at least 2 the operator
norms induced by states with Schmidt rank k are invariant only under local
unitaries, the swap operator and the transpose map. However, in the k = 1 case
there is an additional isometry: the partial transpose map.Comment: 16 pages, typos corrected, references added, proof of Theorem 4.3
simplified and clarifie
- …