953 research outputs found

    Exploring the Universe with Metal-Poor Stars

    Full text link
    The early chemical evolution of the Galaxy and the Universe is vital to our understanding of a host of astrophysical phenomena. Since the most metal-poor Galactic stars (with metallicities down to [Fe/H]\sim-5.5) are relics from the high-redshift Universe, they probe the chemical and dynamical conditions of the Milky Way and the origin and evolution of the elements through nucleosynthesis. They also provide constraints on the nature of the first stars, their associated supernovae and initial mass function, and early star and galaxy formation. The Milky Way's dwarf satellites contain a large fraction (~30%) of the known most metal-poor stars that have chemical abundances that closely resemble those of equivalent halo stars. This suggests that chemical evolution may be universal, at least at early times, and that it is driven by massive, energetic SNe. Some of these surviving, ultra-faint systems may show the signature of just one such PopIII star; they may even be surviving first galaxies. Early analogs of the surviving dwarfs may thus have played an important role in the assembly of the old Galactic halo whose formation can now be studied with stellar chemistry. Following the cosmic evolution of small halos in simulations of structure formation enables tracing the cosmological origin of the most metal-poor stars in the halo and dwarf galaxies. Together with future observations and additional modeling, many of these issues, including the reionization history of the Milky Way, may be constrained this way. The chapter concludes with an outlook about upcoming observational challenges and ways forward is to use metal-poor stars to constrain theoretical studies.Comment: 34 pages, 11 figures. Book chapter to appear in "The First Galaxies - Theoretical Predictions and Observational Clues", 2012 by Springer, eds. V. Bromm, B. Mobasher, T. Wiklin

    Automated High-Content Live Animal Drug Screening Using C. elegans Expressing the Aggregation Prone Serpin α1-antitrypsin Z

    Get PDF
    The development of preclinical models amenable to live animal bioactive compound screening is an attractive approach to discovering effective pharmacological therapies for disorders caused by misfolded and aggregation-prone proteins. In general, however, live animal drug screening is labor and resource intensive, and has been hampered by the lack of robust assay designs and high throughput work-flows. Based on their small size, tissue transparency and ease of cultivation, the use of C. elegans should obviate many of the technical impediments associated with live animal drug screening. Moreover, their genetic tractability and accomplished record for providing insights into the molecular and cellular basis of human disease, should make C. elegans an ideal model system for in vivo drug discovery campaigns. The goal of this study was to determine whether C. elegans could be adapted to high-throughput and high-content drug screening strategies analogous to those developed for cell-based systems. Using transgenic animals expressing fluorescently-tagged proteins, we first developed a high-quality, high-throughput work-flow utilizing an automated fluorescence microscopy platform with integrated image acquisition and data analysis modules to qualitatively assess different biological processes including, growth, tissue development, cell viability and autophagy. We next adapted this technology to conduct a small molecule screen and identified compounds that altered the intracellular accumulation of the human aggregation prone mutant that causes liver disease in α1-antitrypsin deficiency. This study provides powerful validation for advancement in preclinical drug discovery campaigns by screening live C. elegans modeling α1-antitrypsin deficiency and other complex disease phenotypes on high-content imaging platforms

    Daily Rhythms of Plasma Melatonin, but Not Plasma Leptin or Leptin mRNA, Vary between Lean, Obese and Type 2 Diabetic Men

    Get PDF
    Melatonin and leptin exhibit daily rhythms that may contribute towards changes in metabolic physiology. It remains unclear, however, whether this rhythmicity is altered in obesity or type 2 diabetes (T2DM). We tested the hypothesis that 24-hour profiles of melatonin, leptin and leptin mRNA are altered by metabolic status in laboratory conditions. Men between 45–65 years old were recruited into lean, obese-non-diabetic or obese-T2DM groups. Volunteers followed strict sleep-wake and dietary regimes for 1 week before the laboratory study. They were then maintained in controlled light-dark conditions, semi-recumbent posture and fed hourly iso-energetic drinks during wake periods. Hourly blood samples were collected for hormone analysis. Subcutaneous adipose biopsies were collected 6-hourly for gene expression analysis. Although there was no effect of subject group on the timing of dim light melatonin onset (DLMO), nocturnal plasma melatonin concentration was significantly higher in obese-non-diabetic subjects compared to weight-matched T2DM subjects (p<0.01) and lean controls (p<0.05). Two T2DM subjects failed to produce any detectable melatonin, although did exhibit plasma cortisol rhythms comparable to others in the group. Consistent with the literature, there was a significant (p<0.001) effect of subject group on absolute plasma leptin concentration and, when expressed relative to an individual’s 24-hour mean, plasma leptin showed significant (p<0.001) diurnal variation. However, there was no difference in amplitude or timing of leptin rhythms between experimental groups. There was also no significant effect of time on leptin mRNA expression. Despite an overall effect (p<0.05) of experimental group, post-hoc analysis revealed no significant pair-wise effects of group on leptin mRNA expression. Altered plasma melatonin rhythms in weight-matched T2DM and non-diabetic individuals supports a possible role of melatonin in T2DM aetiology. However, neither obesity nor T2DM changed 24-hour rhythms of plasma leptin relative to cycle mean, or expression of subcutaneous adipose leptin gene expression, compared with lean subjects

    The stellar halo of the Galaxy

    Get PDF
    Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes. Full-resolution version available at http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd

    Roles of hyaluronan in bone resorption

    Get PDF
    BACKGROUND: Hyaluronan, an unsulfated glycosaminoglycan, while being closely linked to osteoclast function several years ago, has received little attention lately. Given recent new knowledge of hyaluronan's possible cell binding abilities, it is important to re-examine the role of this polysaccharide in bone homeostasis. DISCUSSION: Previously published data demonstrating a linkage between induction of hyaluronan synthesis and osteoclast-mediated bone resorption are reviewed. Suggestions are made involving the cell binding ability of hyaluronan and its potential to mediate osteoclast binding to bone surfaces and its potential to serve as a diffusion barrier and participate in the sealing zone required for osteoclast-mediated bone resorption. SUMMARY: This brief article summarizes previous studies linking HA to bone resorption and suggests roles for hyaluronan in the process of bone resorption

    The Role of IL-15 Deficiency in the Pathogenesis of Virus-Induced Asthma Exacerbations

    Get PDF
    Rhinovirus infections are the major cause of asthma exacerbations. We hypothesised that IL-15, a cytokine implicated in innate and acquired antiviral immunity, may be deficient in asthma and important in the pathogenesis of asthma exacerbations. We investigated regulation of IL-15 induction by rhinovirus in human macrophages in vitro, IL-15 levels in bronchoalveolar lavage (BAL) fluid and IL-15 induction by rhinovirus in BAL macrophages from asthmatic and control subjects, and related these to outcomes of infection in vivo. Rhinovirus induced IL-15 in macrophages was replication-, NF-κB- and α/β interferon-dependent. BAL macrophage IL-15 induction by rhinovirus was impaired in asthmatics and inversely related to lower respiratory symptom severity during experimental rhinovirus infection. IL-15 levels in BAL fluid were also decreased in asthmatics and inversely related with airway hyperresponsiveness and with virus load during in vivo rhinovirus infection. Deficient IL-15 production in asthma may be important in the pathogenesis of asthma exacerbations

    Spatial dimensions of stated preference valuation in environmental and resource economics: methods, trends and challenges

    Get PDF

    Clinical and biochemical effects of a combination botanical product (ClearGuardâ„¢) for allergy: a pilot randomized double-blind placebo-controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Botanical products are frequently used for treatment of nasal allergy. Three of these substances, <it>Cinnamomum zeylanicum</it>, <it>Malpighia glabra</it>, and <it>Bidens pilosa</it>, have been shown to have a number of anti-allergic properties <it>in-vitro</it>. The current study was conducted to determine the effects of these combined ingredients upon the nasal response to allergen challenge in patients with seasonal allergic rhinitis.</p> <p>Methods</p> <p>Twenty subjects were randomized to receive the combination botanical product, (CBP) 2 tablets three times a day, loratadine, 10 mg once a day in the morning, or placebo, using a randomized, double-blinded crossover design. Following 2 days of each treatment and during the third day of treatment, subjects underwent a nasal allergen challenge (NAC), in which nasal symptoms were assessed after each challenge dose and every 2 hours for 8 hours. Nasal lavage fluid was assessed for tryptase, prostaglandin D2, and leukotriene E4 concentrations and inflammatory cells.</p> <p>Results</p> <p>Loratadine significantly reduced the total nasal symptom score during the NAC compared with placebo (P = 0.04) while the CBP did not. During the 8 hour period following NAC, loratadine and the CBP both reduced NSS compared with placebo (P = 0.034 and P = 0.029, respectively). Analysis of nasal lavage fluid demonstrated that the CBP prevented the increase in prostaglandin D2 release following NAC, while neither loratadine nor placebo had this effect. None of the treatments significantly affected tryptase or leukotriene E4 release or inflammatory cell infiltration.</p> <p>Conclusion</p> <p>The CBP significantly reduced NSS during the 8 hours following NAC and marginally inhibited the release of prostaglandin D2 into nasal lavage fluid, suggesting potential clinical utility in patients with allergic rhinitis.</p

    EGFR/HER2 inhibitor AEE788 increases ER-mediated transcription in HER2/ER-positive breast cancer cells but functions synergistically with endocrine therapy

    Get PDF
    BACKGROUND: Cross-talk between receptor tyrosine kinases and the oestrogen receptor (ER) is implicated in resistance to endocrine therapy. We investigated whether AEE788 (a combined inhibitor of EGFR, HER2 and VEGFR) plus tamoxifen or letrozole enhanced the individual anti-tumour effects of these agents. METHODS: Breast cancer cell lines modelling endocrine-resistant and -sensitive disease were engineered to express aromatase (A) and examined using proliferation, western blotting and ER-alpha transcription assays. RESULTS: AEE788 enhanced the anti-proliferative effect of tamoxifen and letrozole in ER+ cell lines (MCF-7 2A, ZR75.1 A3 and BT474 A3). This associated with an elevated G1 arrest and nuclear accumulation of p27. It is noteworthy that AEE788 alone or in combination with endocrine therapy increased the expression of progesterone receptor (PGR) and TFF1 in BT474 A3 cells. This may indicate a mechanism of resistance to AEE788 in ER+/HER2(+) breast cancers. In a ZR75.1 A3 xenograft, AEE788 alone or in combination with tamoxifen provided no further benefit compared with letrozole. However, letrozole plus AEE788 produced a significantly greater inhibition of tumour growth compared with letrozole alone. CONCLUSION: These data suggest that AEE788 plus letrozole in breast cancer overexpressing HER2 may provide superior anti-tumour activity, compared with single agents. British Journal of Cancer (2010) 102, 1235-1243. doi: 10.1038/sj.bjc.6605641 www.bjcancer.com (C) 2010 Cancer Research U
    • …
    corecore