365 research outputs found

    Two new pathogenic ascomycetes in Guignardia and Rosenscheldiella on New Zealand's pygmy mistletoes (Korthalsella: Viscaceae)

    Get PDF
    Two new pathogens, Guignardia korthalsellae and Rosenscheldiella korthalsellae, are described from New Zealand's pygmy mistletoes (Korthalsella, Viscaceae). Both form ascomata on living phylloclades with minimal disruption of the tissue. Fungal hyphae within the phylloclade are primarily intercellular. Guignardia korthalsellae disrupts a limited number of epidermal cells immediately around the erumpent ascoma, while the ascomata of Rosenscheldiella korthalsellae develop externally on small patches of stromatic tissue that form above stomatal cavities. Rosenscheldiella is applied in a purely morphological sense. LSU sequences show that R. korthalsellae as well as another New Zealand species, Rosenscheldiella brachyglottidis, are members of the Mycosphaerellaceae sensu stricto. Genetically, Rosenscheldiella, in the sense we are using it, is polyphyletic; LSU and ITS sequences place the two New Zealand species in different clades within the Mycosphaerellaceae. Rosenscheldiella is retained for these fungi until generic relationships within the family are resolved. Whether or not the type species of Rosenscheldiella, R. styracis, is also a member of the Mycosphaerellaceae is not known, but it has a similar morphology and relationship to its host as the two New Zealand species

    Criticality in coupled quantum spin-chains with competing ladder-like and two-dimensional couplings

    Full text link
    Motivated by the geometry of spins in the material CaCu2_2O3_3, we study a two-layer, spin-half Heisenberg model, with nearest-neighbor exchange couplings J and \alpha*J along the two axes in the plane and a coupling J_\perp perpendicular to the planes. We study these class of models using the Stochastic Series Expansion (SSE) Quantum Monte Carlo simulations at finite temperatures and series expansion methods at T=0. The critical value of the interlayer coupling, J_\perp^c, separating the N{\'e}el ordered and disordered ground states, is found to follow very closely a square root dependence on α\alpha. Both T=0 and finite-temperature properties of the model are presented.Comment: 9 pages, 11 figs., 1 tabl

    The Magnetic Field of the Solar Corona from Pulsar Observations

    Full text link
    We present a novel experiment with the capacity to independently measure both the electron density and the magnetic field of the solar corona. We achieve this through measurement of the excess Faraday rotation due to propagation of the polarised emission from a number of pulsars through the magnetic field of the solar corona. This method yields independent measures of the integrated electron density, via dispersion of the pulsed signal and the magnetic field, via the amount of Faraday rotation. In principle this allows the determination of the integrated magnetic field through the solar corona along many lines of sight without any assumptions regarding the electron density distribution. We present a detection of an increase in the rotation measure of the pulsar J1801−-2304 of approximately 160 \rad at an elongation of 0.95∘^\circ from the centre of the solar disk. This corresponds to a lower limit of the magnetic field strength along this line of sight of >393ÎŒG> 393\mu\mathrm{G}. The lack of precision in the integrated electron density measurement restricts this result to a limit, but application of coronal plasma models can further constrain this to approximately 20mG, along a path passing 2.5 solar radii from the solar limb. Which is consistent with predictions obtained using extensions to the Source Surface models published by Wilcox Solar ObservatoryComment: 16 pages, 4 figures (1 colour): Submitted to Solar Physic

    Charge order and low frequency spin dynamics in lanthanum cuprates revealed by Nuclear Magnetic Resonance

    Full text link
    We report detailed 17O, 139La, and 63Cu Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) measurements in a stripe ordered La1.875Ba0.125CuO4 single crystal and in oriented powder samples of La1.8-xEu0.2SrxCuO4. We observe a partial wipeout of the 17O NMR intensity and a simultaneous drop of the 17O electric field gradient (EFG) at low temperatures where the spin stripe order sets in. In contrast, the 63Cu intensity is completely wiped out at the same temperature. The drop of the 17O quadrupole frequency is compatible with a charge stripe order. The 17O spin lattice relaxation rate shows a peak similar to that of the 139La, which is of magnetic origin. This peak is doping dependent and is maximal at x ~ 1/8.Comment: submitted to European Physical Journal Special Topic

    Scaling Regimes, Crossovers, and Lattice Corrections in 2D Heisenberg Antiferromagnets

    Full text link
    We study scaling behavior in 2D, S=1/2 and S=1 Heisenberg antiferromagnets using the data on full q-dependences of the equal time structure factor and the static susceptibility, calculated through high temperature expansions. We also carry out comparisons with a model of two coupled S=1/2 planes with the interlayer coupling tuned to the T=0 critical point. We separately determine the spin-wave velocity c and mass m=c/Οm=c/\xi, in addition to the correlation length, Ο\xi, and find that c is temperature dependent; only for T\alt JS, it approaches its known T=0 value c0c_0. Despite this temperature dependent spin-wave velocity, full q- and ω\omega-dependences of the dynamical susceptibility χ(q,ω)\chi(\bf q,\omega) agree with the universal scaling functions computable for the σ\sigma-model, for temperatures upto T0∌0.6c0/aT_0 \sim 0.6c_0/a. Detailed comparisons show that below T0T_0 the S=1 model is in the renormalized classical (RC) regime, the two plane model is in the quantum critical (QC) regime, and the S=1/2 model exhibits a RC-QC crossover, centered at T=0.55J. In particular, for the S=1/2 model above this crossover and for the two-plane model at all T, the spin-wave mass is in excellent agreement with the universal QC prediction, m≃1.04 Tm\simeq 1.04\,T. In contrast, for the S=1/2 model below the RC-QC crossover, and for the S=1 model at all T, the behavior agrees with the known RC expression. For all models nonuniversal behavior occurs above T∌0.6c0/aT\sim 0.6c_0/a. Our results strongly support the conjecture of Chubukov and Sachdev that the S=1/2 model is close to the T=0 critical point to exhibit QC behavior.Comment: 13 pages, REVTeX with attached PostScript (see file for addl info

    Coexistence of double alternating antiferromagnetic chains in (VO)_2P_2O_7 : NMR study

    Full text link
    Nuclear magnetic resonance (NMR) of 31P and 51V nuclei has been measured in a spin-1/2 alternating-chain compound (VO)_2P_2O_7. By analyzing the temperature variation of the 31P NMR spectra, we have found that (VO)_2P_2O_7 has two independent spin components with different spin-gap energies. The spin gaps are determined from the temperature dependence of the shifts at 31P and 51V sites to be 35 K and 68 K, which are in excellent agreement with those observed in the recent inelastic neutron scattering experiments [A.W. Garrett et al., Phys. Rev. Lett. 79, 745 (1997)]. This suggests that (VO)_2P_2O_7 is composed of two magnetic subsystems showing distinct magnetic excitations, which are associated with the two crystallographically-inequivalent V chains running along the b axis. The difference of the spin-gap energies between the chains is attributed to the small differences in the V-V distances, which may result in the different exchange alternation in each magnetic chain. The exchange interactions in each alternating chain are estimated and are discussed based on the empirical relation between the exchange interaction and the interatomic distance.Comment: 10 pages, 11 embedded eps figures, REVTeX, Submitted to Phys. Rev.

    Crystallization of a supercooled liquid and of a glass - Ising model approach

    Full text link
    Using Monte Carlo simulations we study crystallization in the three-dimensional Ising model with four-spin interaction. We monitor the morphology of crystals which grow after placing crystallization seeds in a supercooled liquid. Defects in such crystals constitute an intricate and very stable network which separate various domains by tensionless domain walls. We also show that the crystallization which occurs during the continuous heating of the glassy phase takes place at a heating-rate dependent temperature.Comment: 7 page

    Thermodynamic Properties of the Dimerised and Frustrated S=1/2 Chain

    Full text link
    By high temperature series expansion, exact diagonalisation and temperature density-matrix renormalisation the magnetic susceptibility χ(T)\chi(T) and the specific heat C(T)C(T) of dimerised and frustrated S=1/2S=1/2 chains are computed. All three methods yield reliable results, in particular for not too small temperatures or not too small gaps. The series expansion results are provided in the form of polynomials allowing very fast and convenient fits in data analysis using algebraic programmes. We discuss the difficulty to extract more than two coupling constants from the temperature dependence of χ(T)\chi(T).Comment: 14 pages, 13 figures, 4 table

    Elementary Excitations in Dimerized and Frustrated Heisenberg Chains

    Full text link
    We present a detailed numerical analysis of the low energy excitation spectrum of a frustrated and dimerized spin S=1/2S=1/2 Heisenberg chain. In particular, we show that in the commensurate spin--Peierls phase the ratio of the singlet and triplet excitation gap is a universal function which depends on the frustration parameter only. We identify the conditions for which a second elementary triplet branch in the excitation spectrum splits from the continuum. We compare our results with predictions from the continuum limit field theory . We discuss the relevance of our data in connection with recent experiments on CuGeO3CuGeO_{3}, NaV2O5NaV_2O_5, and (VO)2P2O7(VO)_2P_2O_7.Comment: Corrections to the text + 1 new figure, will appear in PRB (august 98

    Magnetic Fields in the Milky Way

    Full text link
    This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.Comment: 22 pages, 5 figures, to appear in "Magnetic Fields in Diffuse Media", eds. E.M. de Gouveia Dal Pino and A. Lazaria
    • 

    corecore