4,592 research outputs found

    Investigation of Single Boron Acceptors at the Cleaved Si:B (111) Surface

    Full text link
    The cleaved and (2 x 1) reconstructed (111) surface of p-type Si is investigated by scanning tunneling microscopy (STM). Single B acceptors are identified due to their characteristic voltage-dependent contrast which is explained by a local energetic shift of the electronic density of states caused by the Coulomb potential of the negatively charged acceptor. In addition, detailed analysis of the STM images shows that apparently one orbital is missing at the B site at sample voltages of 0.4 - 0.6 V, corresponding to the absence of a localized dangling-bond state. Scanning tunneling spectroscopy confirms a strongly altered density of states at the B atom due to the different electronic structure of B compared to Si.Comment: 6 pages, 7 figure

    Perceptual Pluralism

    Get PDF
    Perceptual systems respond to proximal stimuli by forming mental representations of distal stimuli. A central goal for the philosophy of perception is to characterize the representations delivered by perceptual systems. It may be that all perceptual representations are in some way proprietarily perceptual and differ from the representational format of thought (Dretske 1981; Carey 2009; Burge 2010; Block ms.). Or it may instead be that perception and cognition always trade in the same code (Prinz 2002; Pylyshyn 2003). This paper rejects both approaches in favor of perceptual pluralism, the thesis that perception delivers a multiplicity of representational formats, some proprietary and some shared with cognition. The argument for perceptual pluralism marshals a wide array of empirical evidence in favor of iconic (i.e., image-like, analog) representations in perception as well as discursive (i.e., language-like, digital) perceptual object representations

    Core excitation in Coulomb breakup reactions

    Full text link
    Within the pure Coulomb breakup mechanism, we investigate the one-neutron removal reaction of the type A(a,bγ\gamma)X with 11^{11}Be and 19^{19}C projectiles on a heavy target nucleus 208^{208}Pb at the beam energy of 60 MeV/nucleon. Our intention is to examine the prospective of using these reactions to study the structure of neutron rich nuclei. Integrated partial cross sections and momentum distributions for the ground as well as excited bound states of core nuclei are calculated within the finite range distorted wave Born approximation as well as within the adiabatic model of the Coulomb breakup. Our results are compared with those obtained in the studies of the reactions on a light target where the breakup proceeds via the pure nuclear mechanism. We find that the transitions to excited states of the core are quite weak in the Coulomb dominated process as compared to the pure nuclear breakup.Comment: Revtex format, five postscript figures included, to appear in Phys. Rev.

    A comparison of statistical machine learning methods in heartbeat detection and classification

    Get PDF
    In health care, patients with heart problems require quick responsiveness in a clinical setting or in the operating theatre. Towards that end, automated classification of heartbeats is vital as some heartbeat irregularities are time consuming to detect. Therefore, analysis of electro-cardiogram (ECG) signals is an active area of research. The methods proposed in the literature depend on the structure of a heartbeat cycle. In this paper, we use interval and amplitude based features together with a few samples from the ECG signal as a feature vector. We studied a variety of classification algorithms focused especially on a type of arrhythmia known as the ventricular ectopic fibrillation (VEB). We compare the performance of the classifiers against algorithms proposed in the literature and make recommendations regarding features, sampling rate, and choice of the classifier to apply in a real-time clinical setting. The extensive study is based on the MIT-BIH arrhythmia database. Our main contribution is the evaluation of existing classifiers over a range sampling rates, recommendation of a detection methodology to employ in a practical setting, and extend the notion of a mixture of experts to a larger class of algorithms

    On slip pulses at a sheared frictional viscoelastic/ non deformable interface

    Full text link
    We study the possibility for a semi-infinite block of linear viscoelastic material, in homogeneous frictional contact with a non-deformable one, to slide under shear via a periodic set of ``self-healing pulses'', i.e. a set of drifting slip regions separated by stick ones. We show that, contrary to existing experimental indications, such a mode of frictional sliding is impossible for an interface obeying a simple local Coulomb law of solid friction. We then discuss possible physical improvements of the friction model which might open the possibility of such dynamics, among which slip weakening of the friction coefficient, and stress the interest of developing systematic experimental investigations of this question.Comment: 23 pages, 3 figures. submitted to PR

    LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector

    Get PDF
    We present a unified analysis of the two main production processes of vector boson pairs at the LHC, VV-fusion and qqbar annihilation, in a minimal strongly interacting electroweak symmetry breaking sector. Using a unitarized electroweak chiral Lagrangian formalism and modeling the final V_L V_L strong rescattering effects by a form factor, we describe qqbar annihilation processes in terms of the two chiral parameters that govern elastic V_L V_L scattering. Depending on the values of these two chiral parameters, the unitarized amplitudes may present resonant enhancements in different angular momentum-isospin channels. Scanning this two parameter space, we generate the general resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector and determine the regions that can be probed at the LHC.Comment: Final version to appear in Phys. Rev. D, including a more detailed exposition and a few more references. Conclusions and results unchanged. 14 pages, 5 figure

    Out of equilibrium: understanding cosmological evolution to lower-entropy states

    Get PDF
    Despite the importance of the Second Law of Thermodynamics, it is not absolute. Statistical mechanics implies that, given sufficient time, systems near equilibrium will spontaneously fluctuate into lower-entropy states, locally reversing the thermodynamic arrow of time. We study the time development of such fluctuations, especially the very large fluctuations relevant to cosmology. Under fairly general assumptions, the most likely history of a fluctuation out of equilibrium is simply the CPT conjugate of the most likely way a system relaxes back to equilibrium. We use this idea to elucidate the spacetime structure of various fluctuations in (stable and metastable) de Sitter space and thermal anti-de Sitter space.Comment: 27 pages, 11 figure

    High-contrast imaging constraints on gas giant planet formation - The Herbig Ae/Be star opportunity

    Full text link
    Planet formation studies are often focused on solar-type stars, implicitly considering our Sun as reference point. This approach overlooks, however, that Herbig Ae/Be stars are in some sense much better targets to study planet formation processes empirically, with their disks generally being larger, brighter and simply easier to observe across a large wavelength range. In addition, massive gas giant planets have been found on wide orbits around early type stars, triggering the question if these objects did indeed form there and, if so, by what process. In the following I briefly review what we currently know about the occurrence rate of planets around intermediate mass stars, before discussing recent results from Herbig Ae/Be stars in the context of planet formation. The main emphasis is put on spatially resolved polarized light images of potentially planet forming disks and how these images - in combination with other data - can be used to empirically constrain (parts of) the planet formation process. Of particular interest are two objects, HD100546 and HD169142, where, in addition to intriguing morphological structures in the disks, direct observational evidence for (very) young planets has been reported. I conclude with an outlook, what further progress we can expect in the very near future with the next generation of high-contrast imagers at 8-m class telescopes and their synergies with ALMA.Comment: Accepted by Astrophysics and Space Science as invited short review in special issue about Herbig Ae/Be stars; 12 pages incl. 5 figures, 2 tables and reference

    Uric acid: an old actor for a new role

    Get PDF
    The role of uric acid as an independent risk factor for cardiovascular events is still debated. In fact, other confounding factors such as glucose intolerance, obesity, dyslipidaemia, hypertension, use of diuretics and insulin resistance may play a role in determining the increased vascular risk associated to elevated uric acid concentrations. These factors (including high uric acid) have been mentioned in one or more definitions of the metabolic syndrome. Recently, much attention has been paid to the metabolic syndrome due to its possible role as a risk factor for the development of type 2 diabetes and cardiovascular disease. The worldwide increase in the prevalence of obesity and diabetes is a reason not only for the increasing prevalence of the metabolic syndrome but also of hyperuricaemia. A better understanding of the role of uric acid in health and in disease states may help physicians to improve their performance in preventing and treating cardiovascular disease

    Localized modes at a D-brane--O-plane intersection and heterotic Alice strings

    Full text link
    We study a system of NcN_c D3D3-branes intersecting D7D7-branes and O7O7-planes in 1+1-dimensions. We use anomaly cancellation and string dualities to argue that there must be chiral fermion zero-modes on the D3D3-branes which are localized near the O7O7-planes. Away from the orientifold limit we verify this by using index theory as well as explicit construction of the zero-modes. This system is related to F-theory on K3 and heterotic matrix string theory, and the heterotic strings are related to Alice string defects in N=4\mathcal{N}=4 Super-Yang-Mills. In the limit of large NcN_c we find an AdS3AdS_3 dual of the heterotic matrix string CFT.Comment: 44 pages, typos corrected, version published in JHE
    corecore