2,783 research outputs found
New Insights into Uniformly Accelerated Detector in a Quantum Field
We obtained an exact solution for a uniformly accelerated Unruh-DeWitt
detector interacting with a massless scalar field in (3+1) dimensions which
enables us to study the entire evolution of the total system, from the initial
transient to late-time steady state. We find that the Unruh effect as derived
from time-dependent perturbation theory is valid only in the transient stage
and is totally invalid for cases with proper acceleration smaller than the
damping constant. We also found that, unlike in (1+1)D results, the (3+1)D
uniformly accelerated Unruh-DeWitt detector in a steady state does emit a
positive radiated power of quantum nature at late-times, but it is not
connected to the thermal radiance experienced by the detector in the Unruh
effect proper.Comment: 6 pages, invited talk given by SYL at the conference of International
Association for Relativistic Dynamics (IARD), June 2006, Storrs, Connecticut,
US
Atom gratings produced by large angle atom beam splitters
An asymptotic theory of atom scattering by large amplitude periodic
potentials is developed in the Raman-Nath approximation. The atom grating
profile arising after scattering is evaluated in the Fresnel zone for
triangular, sinusoidal, magneto-optical, and bichromatic field potentials. It
is shown that, owing to the scattering in these potentials, two
\QTR{em}{groups} of momentum states are produced rather than two distinct
momentum components. The corresponding spatial density profile is calculated
and found to differ significantly from a pure sinusoid.Comment: 16 pages, 7 figure
A note on the Painleve analysis of a (2+1) dimensional Camassa-Holm equation
We investigate the Painleve analysis for a (2+1) dimensional Camassa-Holm
equation. Our results show that it admits only weak Painleve expansions. This
then confirms the limitations of the Painleve test as a test for complete
integrability when applied to non-semilinear partial differential equations.Comment: Chaos, Solitons and Fractals (Accepted for publication
Uniformly Accelerated Charge in a Quantum Field: From Radiation Reaction to Unruh Effect
We present a stochastic theory for the nonequilibrium dynamics of charges
moving in a quantum scalar field based on the worldline influence functional
and the close-time-path (CTP or in-in) coarse-grained effective action method.
We summarize (1) the steps leading to a derivation of a modified
Abraham-Lorentz-Dirac equation whose solutions describe a causal semiclassical
theory free of runaway solutions and without pre-acceleration patholigies, and
(2) the transformation to a stochastic effective action which generates
Abraham-Lorentz-Dirac-Langevin equations depicting the fluctuations of a
particle's worldline around its semiclassical trajectory. We point out the
misconceptions in trying to directly relate radiation reaction to vacuum
fluctuations, and discuss how, in the framework that we have developed, an
array of phenomena, from classical radiation and radiation reaction to the
Unruh effect, are interrelated to each other as manifestations at the
classical, stochastic and quantum levels. Using this method we give a
derivation of the Unruh effect for the spacetime worldline coordinates of an
accelerating charge. Our stochastic particle-field model, which was inspired by
earlier work in cosmological backreaction, can be used as an analog to the
black hole backreaction problem describing the stochastic dynamics of a black
hole event horizon.Comment: Invited talk given by BLH at the International Assembly on
Relativistic Dynamics (IARD), June 2004, Saas Fee, Switzerland. 19 pages, 1
figur
Etched distributed Bragg reflectors as three-dimensional photonic crystals: photonic bands and density of states
The photonic band dispersion and density of states (DOS) are calculated for
the three-dimensional (3D) hexagonal structure corresponding to a distributed
Bragg reflector patterned with a 2D triangular lattice of circular holes.
Results for the Si/SiO and GaAs/AlGaAs systems determine the optimal
parameters for which a gap in the 2D plane occurs and overlaps the 1D gap of
the multilayer. The DOS is considerably reduced in correspondence with the
overlap of 2D and 1D gaps. Also, the local density of states (i.e., the DOS
weighted with the squared electric field at a given point) has strong
variations depending on the position. Both results imply substantial changes of
spontaneous emission rates and patterns for a local emitter embedded in the
structure and make this system attractive for the fabrication of a 3D photonic
crystal with controlled radiative properties.Comment: 8 pages, 5 figures; to appear in Phys. Rev.
Coherent spin valve phenomena and electrical spin injection in ferromagnetic/semiconductor/ferromagnetic junctions
Coherent quantum transport in ferromagnetic/ semiconductor/ ferromagnetic
junctions is studied theoretically within the Landauer framework of ballistic
transport. We show that quantum coherence can have unexpected implications for
spin injection and that some intuitive spintronic concepts which are founded in
semi-classical physics no longer apply: A quantum spin-valve (QSV) effect
occurs even in the absence of a net spin polarized current flowing through the
device, unlike in the classical regime. The converse effect also arises, i.e. a
zero spin-valve signal for a non-vanishing spin-current. We introduce new
criteria useful for analyzing quantum and classical spin transport phenomena
and the relationships between them. The effects on QSV behavior of
spin-dependent electron transmission at the interfaces, interface Schottky
barriers, Rashba spin-orbit coupling and temperature, are systematically
investigated. While the signature of the QSV is found to be sensitive to
temperature, interestingly, that of its converse is not. We argue that the QSV
phenomenon can have important implications for the interpretation of
spin-injection in quantum spintronic experiments with spin-valve geometries.Comment: 15 pages including 11 figures. To appear in PR
Spin-polarized transport and Andreev reflection in semiconductor/superconductor hybrid structures
We show that spin-polarized electron transmission across
semiconductor/superconductor (Sm/S) hybrid structures depends sensitively on
the degree of spin polarization as well as the strengths of potential and
spin-flip scattering at the interface. We demonstrate that increasing the Fermi
velocity mismatch in the Sm and S regions can lead to enhanced junction
transparency in the presence of spin polarization. We find that the Andreev
reflection amplitude at the superconducting gap energy is a robust measure of
the spin polarization magnitude, being independent of the strengths of
potential and spin-flip scattering and the Fermi velocity of the
superconductor.Comment: 4 pages, 2 figure
An Analysis of Mutual Communication between Qubits by Capacitive Coupling
A behavior of a two qubit system coupled by the electric capacitance has been
studied quantum mechanically. We found that the interaction is essentially the
same as the one for the dipole-dipole interaction; i.e., qubit-qubit coupling
of the NMR quantum gate. Therefore a quantum gate could be constructed by the
same operation sequence for the NMR device if the coupling is small enough. The
result gives an information to the effort of development of the devices
assuming capacitive coupling between qubits.Comment: 8 pages, 2 figures Revised and Replaced on Apr. 8 200
Classtalk: A Classroom Communication System for Active Learning
This pdf file is an article describing the advantages of using Classtalk technology in the classroom to enhance classroom communication. Classtalk technology cab facilitate the presentation of questions for small group work, collec the student answers and then display histograms showing how the class answered. This new communication technology can help instructors create a more interactive, student centered classroom, especially when teaching large courses. The article describes Classtalk as a very useful tool not only for engaging students in active learning, but also for enhancing the overall communication within the classroom. This article is a selection from the electronic Journal for Computing in Higher Education. Educational levels: Graduate or professional
Women, men and coronary heart disease: a review of the qualitative literature
Aim. This paper presents a review of the qualitative literature which examines the experiences of patients with coronary heart disease. The paper also assesses whether the experiences of both female and male patients are reflected in the literature and summarizes key themes.
Background. Understanding patients' experiences of their illness is important for coronary heart disease prevention and education. Qualitative methods are particularly suited to eliciting patients' detailed understandings and perceptions of illness. As much previous research has been 'gender neutral', this review pays particular attention to gender.
Methods. Published papers from 60 qualitative studies were identified for the review through searches in MEDLINE, EMBASE, CINAHL, PREMEDLINE, PsychINFO, Social Sciences Citation Index and Web of Science using keywords related to coronary heart disease.
Findings. Early qualitative studies of patients with coronary heart disease were conducted almost exclusively with men, and tended to generalize from 'male' experience to 'human' experience. By the late 1990s this pattern had changed, with the majority of studies including women and many being conducted with solely female samples. However, many studies that include both male and female coronary heart disease patients still do not have a specific gender focus. Key themes in the literature include interpreting symptoms and seeking help, belief about coronary 'candidates' and relationships with health professionals. The influence of social roles is important: many female patients have difficulties reconciling family responsibilities and medical advice, while male patients worry about being absent from work.
Conclusions. There is a need for studies that compare the experiences of men and women. There is also an urgent need for work that takes masculinity and gender roles into account when exploring the experiences of men with coronary heart disease
- …
