8 research outputs found

    Optimizing Western Flower Thrips Management on French Beans by Combined Use of Beneficials and Imidacloprid

    Get PDF
    Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an important pest of vegetable crops worldwide and has developed resistance to many insecticides. The predatory mites Neoseiulus (=Amblyseius) cucumeris (Oudemans), the entomopathogenic fungus Metarhizium anisopliae (Metsch.), and an insecticide (imidacloprid) were tested for their efficacy to reduce WFT population density and damage to French bean (Phaseolus vulgaris L.) pods under field conditions in two planting periods. Metarhizium anisopliae was applied as a foliar spray weekly at a rate of one litre spray volume per plot while imidacloprid was applied as a soil drench every two weeks at a rate of two litres of a mixture of water and imidacloprid per m(2). Neoseiulus cucumeris was released every two weeks on plant foliage at a rate of three mites per plant. Single and combined treatment applications reduced WFT population density by at least three times and WFT damage to French bean pods by at least 1.7 times compared with untreated plots. The benefit-cost ratios in management of WFT were profitable with highest returns realized on imidacloprid treated plots. The results indicate that M. anisopliae, N. cucumeris, and imidacloprid have the potential for use in developing an integrated pest management program against WFT on French beans.BMZ/GIZ/07.7860.5-001.0

    Land use effects on termite assemblages in Kenya

    No full text
    Termites perform key ecological functions and they also cause crop damage. Land use change resulting from agricultural intensification can result in changes in termite species diversity and abundance. Termite species occurring in natural vegetation, maize monocrop and maize-beans intercrop macrohabitats were investigated in Embu and Machakos Counties, Kenya. Influence of soil properties and seasons was also evaluated. Across the two Counties, seven termite species were recorded with Machakos County having the highest number. Additive diversity partitioning of species richness and Simpson diversity showed that, α component contributed to 98.3% and 99.1% of the total diversity, respectively. Population densities of three termite species significantly varied between land use types in Machakos County but there were no differences in termite species abundance in Embu County. In addition, there were no significant differences in species richness between macrohabitats within each County. In Embu, season significantly influenced the abundance of Macrotermes subhyalinus, M. herus, and Coptotermes formosanus which occurred in greater numbers during the wet season. There was a significant influence of land use on Trinervitermes gratiosus and C. formosanus in Machakos with both species occurring in higher numbers in natural vegetation. Trinervitermes gratiosus was negatively associated with Mn and positively correlated to pH and sand. Macrotermes subhyalinus and M. herus showed a positive association with P and silt while C. formosanus was positively correlated to Ca and Mg. These findings provide an insight into the effects of land use change from natural vegetation to maize agro-ecosystems on termite diversity. It also provides a baseline for further studies on termite diversity in Kenya and their ecological significance

    Short range dispersal of western flower thrips in field-grown French beans in Kenya

    Get PDF
    The short-range diurnal dispersal pattern of adult western flower thrips Frankliniella occidentalis (Pergande), in relation to spatial distribution of French beans, was determined in the field. A total of 1200 adult female F. occidentalis were released on 60 French bean plants with 20 adult thrips per plant at the central release point of 3.14 m2. Dispersal was determined in terms of the number of thrips recorded on French beans planted on concentric circles at 0.9, 1.8, 3.6, 7.2 and 14.4 m radii from a circular central release point for five days. Results indicated that there was a steady increase in the proportion of dispersing adult F. occidentalis from the first to the fourth day in the first planting season, and from the first to the third day in the second planting season. The peak hour for dispersal was 10.15 h in the first season while it was 13.15 h in the second season. Temperature and wind speed were positively associated with the dispersal activity of adult F. occidentalis. Minimal flight activity was at temperatures below 15 °C and peak flight activity was at 19 °C. The prevailing wind direction did not influence the dispersal pattern of adult F. occidentalis in both seasons. Adult F. occidentalis moved up to 7.2 m on French beans on the first day. In both seasons, the mean direction of thrips dispersal was mostly uniformly distributed (not oriented to a particular compass direction) around the central release point. The results provide an insight into developing integrated management strategies against the pest based on isolation of farm fields, management of alterative hosts around French bean fields and insecticide application. Copyright © icipe 201

    Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya

    Get PDF
    Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF) classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC) and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step). An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer’s accuracy and UA: user’s accuracy) for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10–20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models

    Maize Lethal Necrosis (MLN), an Emerging Threat to Maize-Based Food Security in Sub-Saharan Africa

    No full text
    In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on maize in Kenya. The disease has since been confirmed in Rwanda and the Democratic Republic of Congo, and similar symptoms have been reported in Tanzania, Uganda, South Sudan, and Ethiopia. In 2012, yield losses of up to 90% resulted in an estimated grain loss of 126,000 metric tons valued at $52 million in Kenya alone. In eastern Africa, MLN was found to result from coinfection of maize with Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV), although MCMV alone appears to cause significant crop losses. We summarize here the results of collaborative research undertaken to understand the biology and epidemiology of MLN in East Africa and to develop disease management strategies, including identification of MLN-tolerant maize germplasm. We discuss recent progress, identify major issues requiring further research, and discuss the possible next steps for effective management of MLN
    corecore