92,328 research outputs found

    Exclusion Statistics in a trapped two-dimensional Bose gas

    Full text link
    We study the statistical mechanics of a two-dimensional gas with a repulsive delta function interaction, using a mean field approximation. By a direct counting of states we establish that this model obeys exclusion statistics and is equivalent to an ideal exclusion statistics gas.Comment: 3 pages; minor changes in notation; typos correcte

    A Universal Criterion for Plastic Yielding of Metallic Glasses with a (T/Tg)2/3 Temperature Dependence

    Get PDF
    Room temperature (TR) elastic constants and compressive yield strengths of ~30 metallic glasses reveal an average shear limit gammaC=0.0267±0.0020, where tauY=gammaCG is the maximum resolved shear stress at yielding, and G the shear modulus. The gammaC values for individual glasses are correlated with t=TR/Tg, and gammaC for a single glass follows the same correlation (vs t=T/Tg). A cooperative shear model, inspired by Frenkel's analysis of the shear strength of solids, is proposed. Using a scaling analysis leads to a universal law tauCT/G=gammaC0-gammaC1(t)2/3 for the flow stress at finite T where gammaC0=(0.036±0.002) and gammaC1=(0.016±0.002)

    Noncontact measurement of high-temperature surface tension and viscosity of bulk metallic glass-forming alloys using the drop oscillation technique

    Get PDF
    High-temperature surface tension and viscosities for five bulk metallic glass-forming alloys with widely different glass-forming abilities are measured. The measurements are carried out in a high-vacuum electrostatic levitator using the drop oscillation technique. The surface tension follows proportional mathematical addition of pure components' surface tension except when some of the constituent elements have much lower surface tension. In such cases, there is surface segregation of the low surface tension elements. These alloys are found to have orders of magnitude higher viscosity at their melting points compared to the constituent metals. Among the bulk glass-forming alloys, the better glass former has a higher melting-temperature viscosity, which demonstrates that high-temperature viscosity has a pronounced influence on glass-forming ability. Correlations between surface tension and viscosity are also investigated

    Trends of Reynolds number effects on two-dimensional airfoil characteristics for helicopter rotor analyses

    Get PDF
    The primary effects of Reynolds number on two dimensional airfoil characteristics are discussed. Results from an extensive literature search reveal the manner in which the minimum drag and maximum lift are affected by the Reynolds number. C sub d sub min and C sub l sub max are plotted versus Reynolds number for airfoils of various thickness and camber. From the trends observed in the airfoil data, universal scaling laws and easily implemented methods are developed to account for Reynolds number effects in helicopter rotor analyses

    Change of Compressiblity at the Glass Transition and Prigogine-Defay Ratio in ZrTiCuNiBe Alloys

    Get PDF
    The change of the compressibility at the glass transition Tg is evaluated from pressure experiments in the liquid and the glassy state of the ZrTiCuNiBe bulk metallic glass forming system. Via the enthalpy recovery method, we derive an increase of Tg with pressure of 3.6 K/GPa. Comparing the changes of the compressibility, the specific heat capacity, and the thermal expansion coefficient at Tg, we estimate for the first time a Prigogine-Defay ratio in metallic systems. This ratio is about 2.4 for the present alloy and compares well with known nonmetallic glass forming systems

    Specific volumes of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy in the liquid, glass, and crystalline states

    Get PDF
    The specific volumes of the Zr41.2Ti13.8CU12.5Ni10.0Be2.25 alloy as a function of temperature, T, are determined by employing an image digitizing technique and numerical calculation methods applied to the electrostatically levitated spherical alloy. The linear fitting of the volumes of the alloy in the liquid, V-l, glass, V-g, and crystalline V-c, states in the temperature ranges shown in parentheses are V-l(T) = 0.1583 + 8.877 x 10(-6)T(cm^(3)/g) (700-1300 K); V-g(T) = 0.1603 + 5.528 x 10^(-6)T (400-550 K); V-c(T) = 0.1583 + 6.211 x 10(-6)T(400-850 K). The average volume thermal expansion coefficients within the temperature ranges are determined to be 5.32, 3.39, and 3.83 x 10^(-5) (1/K) for the liquid, glass, and crystalline states, respectively

    Optimal control theory investigation of proprotor/wing response to vertical gust

    Get PDF
    Optimal control theory is used to design linear state variable feedback to improve the dynamic characteristics of a rotor and cantilever wing representing the tilting proprotor aircraft in cruise flight. The response to a vertical gust and system damping are used as criteria for the open and closed loop performance. The improvement in the dynamic characteristics achievable is examined for a gimballed rotor and for a hingeless rotor design. Several features of the design process are examined, including: (1) using only the wing or only the rotor dynamics in the control system design; (2) the use of a wing flap as well as the rotor controls for inputs; (3) and the performance of the system designed for one velocity at other forward speeds
    corecore