138,048 research outputs found
Specialization of neural mechanisms underlying face recognition in human infants
Newborn infants respond preferentially to simple face-like patterns, raising the possibility that the face-specific region, identified in the adult cortex are functioning from birth. We sought to evaluate this hypothesis by characterizing the specificity Of infants' electrocortical responses to faces in two ways: (1) comparing responses to faces of humans with those to faces of nonhuman primates; and 2) comparing responses to upright and inverted faces. Adults' face-responsive N170 event-related potential (ERP) component showed specificity to upright human faces that was not observable at any point in the ERPs Of infants. A putative "infant N170" did show sensitivity to the species of the face, but the orientation of the face did not influence processing until a later stage. These findings suggest a process of gradual specialization of cortical face processing systems during postnatal development
Collective frames of reference, recognition, and managers' mental models of competition: a test in two industries
This work was supported by ESRC grant no. R000232883.Managers draw upon sources of collective knowledge to cognitively represent strategic
issues. It has also be argued that cognition is embedded in social interaction, enabling
managers to recognize of others’ cognitions. In two separate industries, this study found
that the influences upon managers’ mental models of their competitive environment include
industry membership, organizational membership, and management level. The results
indicate further that recognition of others’ mental models may be more pronounced than
cognitive similarity.School of Managemen
Application of the dual-kinetic-balance sets in the relativistic many-body problem of atomic structure
The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac
equation for hydrogen-like ions [V. M. Shabaev et al., Phys. Rev. Lett. 93,
130405 (2004)] is extended to problems with a non-local spherically-symmetric
Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis
sets and compare its performance with the widely-employed approach of Notre
Dame (ND) group [W.R. Johnson and J. Sapirstein, Phys. Rev. Lett. 57, 1126
(1986)]. We compare the performance of the ND and DKB methods by computing
various properties of Cs atom: energies, hyperfine integrals, the
parity-non-conserving amplitude of the transition, and the
second-order many-body correction to the removal energy of the valence
electrons. We find that for a comparable size of the basis set the accuracy of
both methods is similar for matrix elements accumulated far from the nuclear
region. However, for atomic properties determined by small distances, the DKB
method outperforms the ND approach. In addition, we present a strategy for
optimizing the size of the basis sets by choosing progressively smaller number
of basis functions for increasingly higher partial waves. This strategy
exploits suppression of contributions of high partial waves to typical
many-body correlation corrections.Comment: 10 page
Linking eye design with host symbiont relationships in pontoniine shrimps (crustacea, decapoda, palaemonidae)
Symbiosis is prevalent in the marine environment with many studies examining the effects of such interactions between host and symbiont. Pontoniine shrimps are a group whose ecology is characterised by symbiotic interactions. This investigation examines the gross morphology of Pontoniinae compound eyes and superficial optical parameters with reference to their symbiotic relationship or lifestyle category; free-living, ectosymbiont, endosymbiont (bivalves) or endosymbiont (non-bivalves). The eye morphologies of free-living and ectosymbiotic species are very similar, yet differ from both forms of endosymbiotic species. Endosymbionts have significantly smaller and simpler eyes with larger facets and bigger interommatidial angles and eye parameters for increased sensitivity levels. However bivalve endosymbionts form an intermediary group between non-bivalve endosymbionts and ectosymbionts as a result of their more active lifestyle. The accessory eye or "nebenauge", although of uncertain function, commonly occurs in free-living Pontoniinae species but rarely in endosymbionts apart from in more primitive species. The variation in morphology reflects tensions between functional requirements and ecological pressures that have strongly influenced eye design in Pontoniinae. © 2014 Dobson et al
GraFIX: a semiautomatic approach for parsing low- and high-quality eye-tracking data
Fixation durations (FD) have been used widely as a measurement of information processing and attention. However, issues like data quality can seriously influence the accuracy of the fixation detection methods and, thus, affect the validity of our results (Holmqvist, Nyström, & Mulvey, 2012). This is crucial when studying special populations such as infants, where common issues with testing (e.g., high degree of movement, unreliable eye detection, low spatial precision) result in highly variable data quality and render existing FD detection approaches highly time consuming (hand-coding) or imprecise (automatic detection). To address this problem, we present GraFIX, a novel semiautomatic method consisting of a two-step process in which eye-tracking data is initially parsed by using velocity-based algorithms whose input parameters are adapted by the user and then manipulated using the graphical interface, allowing accurate and rapid adjustments of the algorithms’ outcome. The present algorithms (1) smooth the raw data, (2) interpolate missing data points, and (3) apply a number of criteria to automatically evaluate and remove artifactual fixations. The input parameters (e.g., velocity threshold, interpolation latency) can be easily manually adapted to fit each participant. Furthermore, the present application includes visualization tools that facilitate the manual coding of fixations. We assessed this method by performing an intercoder reliability analysis in two groups of infants presenting low- and high-quality data and compared it with previous methods. Results revealed that our two-step approach with adaptable FD detection criteria gives rise to more reliable and stable measures in low- and high-quality data
Leveling the playing field: Exploiting technology to enhance tertiary learning
This paper reports on an on-going case study project to explore ICT/ eLearning across several disciplines and with students from diverse backgrounds at tertiary level in New Zealand. The project has been designed to address issues of tertiary-level pedagogy, epedagogy, and research with the goal of building eLearning capacity, leveraging pedagogical change, and closing participatory gaps for students and lecturers. Initial design decisions, the pedagogy that has informed the case studies, and the challenges and benefits of working across subjects and levels in a multi-disciplinary team are described. We also discuss research knowledge mobilization within our own instructional context and more broadly elsewhere
Baby steps: investigating the development of perceptual-motor couplings in infancy
There are cells in our motor cortex that fire both when we perform and when we observe similar actions. It has been suggested that these perceptual-motor couplings in the brain develop through associative learning during correlated sensorimotor experience. Although studies with adult participants have provided support for this hypothesis, there is no direct evidence that associative learning also underlies the initial formation of perceptual–motor couplings in the developing brain. With the present study we addressed this question by manipulating infants’ opportunities to associate the visual and motor representation of a novel action, and by investigating how this influenced their sensorimotor cortex activation when they observed this action performed by others. Pre-walking 7–9-month-old infants performed stepping movements on an infant treadmill while they either observed their own real-time leg movements (Contingent group) or the previously recorded leg movements of another infant (Non-contingent control group). Infants in a second control group did not perform any steps and only received visual experience with the stepping actions. Before and after the training period we measured infants’ sensorimotor alpha suppression, as an index of sensorimotor cortex activation, while they watched videos of other infants’ stepping actions. While we did not find greater sensorimotor alpha suppression following training in the Contingent group as a whole, we nevertheless found that the strength of the visuomotor contingency experienced during training predicted the amount of sensorimotor alpha suppression at post-test in this group. We did not find any effects of motor experience alone. These results suggest that the development of perceptual–motor couplings in the infant brain is likely to be supported by associative learning during correlated visuomotor experience
Radial distribution of RNA genome packaged inside spherical viruses
The problem of RNA genomes packaged inside spherical viruses is studied. The
viral capsid is modeled as a hollowed sphere. The attraction between RNA
molecules and the inner viral capsid is assumed to be non-specific and occurs
at the inner capsid surface only. For small capsid attraction, it is found that
monomer concentration of RNA molecules is maximum at the center of the capsid
to maximize their configurational entropy. For stronger capsid attraction, RNA
concentration peaks at some distance near the capsid. In the latter case, the
competition between the branching of RNA secondary struture and its adsorption
to the inner capsid results in the formation of a dense layer of RNA near
capsid surface. The layer thickness is a slowly varying (logarithmic) function
of the capsid inner radius. Consequently, for immediate strength of RNA-capsid
interaction, the amount of RNA packaged inside a virus is proportional to the
capsid {\em area} (or the number of proteins) instead of its volume. The
numerical profiles describe reasonably well the experimentally observed RNA
nucleotide concentration profiles of various viruses.Comment: 5 pages, 2 figures. Abstract, introduction rewritten. Comparison to
actual virus profiles added. Submitted to PR
Optical properties of split ring resonator metamaterial structures on semiconductor substrates
Metamaterials based on single-layer metallic Split Ring Resonators (SRR) and Wires have been demonstrated to have a resonant response in the near infra-red wavelength range. The use of semiconductor substrates gives the potential for control of the resonant properties of split-ring resonator (SRR) structures by means of active changes in the carrier concentration obtained using either electrical injection or photo-excitation. We examine the influence of extended wires that are either parallel or perpendicular to the gap of the SRRs and report on an equivalent circuit model that provides an accurate method of determining the polarisation dependent resonant response for incident light perpendicular to the surface. Good agreement is obtained for the substantial shift observed in the position of the resonances when the planar metalisation is changed from gold to aluminium
- …
