7,917 research outputs found

    An Analytical Survey of Public Relations as Perceived by Public Relations Practitioners and Journalists

    Get PDF
    Estimates of the portion of a daily newspaper having public relations as a source range from 25 to 80 percent. Indeed, one researcher observed that the daily newspaper and wire services have become dependent upon press relations material to such a degree that, more often than not, at least 50 percent of news copy emerges from the practice of public relations . While no figures could be found estimating the amount of radio and television news originating from public relations sources, these figures are indicative of the major role played by public relations sources in providing the information that the public ingests as news

    Wake model for helicopter rotors in high speed flight

    Get PDF
    Two alternative approaches are developed to calculate blade-vortex interaction airloads on helicopter rotors: second order lifting-line theory, and a lifting surface theory correction. The common approach of using a larger vortex core radius to account for lifting-surface effects is quantified. The second order lifting-line theory also improves the modeling of yawed flow and swept tips. Calculated results are compared with wind tunnel measurements of lateral flapping, and with flight test measurements of blade section lift on SA349/2 and H-34 helicopter rotors. The tip vortex core radius required for good correlation with the flight test data is about 20 percent chord, which is within the range of measured viscous core sizes for helicopter rotors

    Silicon device performance measurements to support temperature range enhancement

    Get PDF
    Semiconductor power devices are typically rated for operation below 150 C. Little data is known for power semiconductors over 150 C. In most cases, the device is derated to zero operating power at 175 C. At the high temperature end of the temperature range, the intrinsic carrier concentration increases to equal the doping concentration level and the silicon behaves as an intrinsic semiconductor. The increase in intrinsic carrier concentration results in a shift of the Fermi level toward mid-bandgap at elevated temperatures. This produces a shift in devices characteristics as a function of temperature. By increasing the doping concentration higher operating temperatures can be achieved. This technique was used to fabricate low power analog and digital devices in silicon with junction operating temperatures in excess of 300 C. Additional temperature effects include increased p-n junction leakage with increasing temperature, resulting in increased resistivity. The temperature dependency of physical properties results in variations in device characteristics. These must be quantified and understood in order to develop extended temperature range operation

    Application of Climate Impact Metrics to Civil Tiltrotor Design

    Get PDF
    Multiple metrics are applied to the design of a large civil tiltrotor, integrating minimum cost and minimum environmental impact. The design mission is passenger transport with similar range and capacity to a regional jet. Separate aircraft designs are generated for minimum empty weight, fuel burn, and environmental impact. A metric specifically developed for the design of aircraft is employed to evaluate emissions. The designs are generated using the NDARC rotorcraft sizing code, and rotor analysis is performed with the CAMRAD II aeromechanics code. Design and mission parameters such as wing loading, disk loading, and cruise altitude are varied to minimize both cost and environmental impact metrics. This paper presents the results of these parametric sweeps as well as the final aircraft designs

    Optimization of Low Reynolds Number Airfoils for Martian Rotor Applications Using an Evolutionary Algorithm

    Get PDF
    The Mars Helicopter (MH) will be flying on the NASA Mars 2020 rover mission scheduled to launch in July of 2020. Research is being performed at the Jet Propulsion Laboratory (JPL) and NASA Ames Research Center to extend the current capabilities and develop the Mars Science Helicopter (MSH) as the next possible step for Martian rotorcraft. The low atmospheric density and the relatively small-scale rotors result in very low chord-based Reynolds number flows over the rotor airfoils. The low Reynolds number regime results in rapid performance degradation for conventional airfoils due to laminar separation without reattachment. Unconventional airfoil shapes with sharp leading edges are explored and optimized for aerodynamic performance at representative Reynolds-Mach combinations for a concept rotor. Sharp leading edges initiate immediate flow separation, and the occurrence of large-scale vortex shedding is found to contribute to the relative performance increase of the optimized airfoils, compared to conventional airfoil shapes. The oscillations are shown to occur independent from laminar-turbulent transition and therefore result in sustainable performance at lower Reynolds numbers. Comparisons are presented to conventional airfoil shapes and peak lift-to-drag ratio increases between 17% and 41% are observed for similar section lift

    Three-dimensional Finite Element Formulation and Scalable Domain Decomposition for High Fidelity Rotor Dynamic Analysis

    Get PDF
    This paper has two objectives. The first objective is to formulate a 3-dimensional Finite Element Model for the dynamic analysis of helicopter rotor blades. The second objective is to implement and analyze a dual-primal iterative substructuring based Krylov solver, that is parallel and scalable, for the solution of the 3-D FEM analysis. The numerical and parallel scalability of the solver is studied using two prototype problems - one for ideal hover (symmetric) and one for a transient forward flight (non-symmetric) - both carried out on up to 48 processors. In both hover and forward flight conditions, a perfect linear speed-up is observed, for a given problem size, up to the point of substructure optimality. Substructure optimality and the linear parallel speed-up range are both shown to depend on the problem size as well as on the selection of the coarse problem. With a larger problem size, linear speed-up is restored up to the new substructure optimality. The solver also scales with problem size - even though this conclusion is premature given the small prototype grids considered in this study

    Recent Efforts Enabling Martian Rotorcraft Missions

    Get PDF
    The Mars Helicopter (MH), launching as a part of the Mars 2020 mission, will begin a new era of planetary exploration. Mars research has historically been conducted through landers, rovers, and satellites. As both government and private industries prepare for human exploration of the Martian surface within two decades, more in depth knowledge of what awaits on the surface is critical. Planetary aerial vehicles increase the range of terrain that can be examined, compared to traditional landers and rovers and have more near surface capability than orbiters. The Jet Propulsion Laboratory (JPL) and NASA Ames are currently exploring possibilities for a Mars Science Helicopter (MSH), a second-generation Mars rotorcraft with the capability of conducting science investigations independently of a lander or rover (although this type of vehicle could also be used assist rovers or landers in future missions). Preliminary designs of coaxial-helicopter and hexacopter configurations have targeted the minimum capability of lifting a payload in the range of two to three kilograms with an overall vehicle mass of approximately twenty kilograms. These MSH designs sizes are constrained by the aeroshell dimensions(currently focused on employing legacy Pathfinder or MSL aeroshells), rather than vehicle structural or aeroperformance limitations. Feasibility of the MSH configurations has been investigated considering packaging/deployment, rotor aerodynamics, and structural analysis studies. Initial findings suggest not only the overall feasibility of MSH configurations but also indicate that improvements up to 11.1 times increase in range or 1.3 times increase in hover time might be achievable, even with an additional science payload, compared to the current design of the MH

    Determinantal formulae for matrices with sparse inverses, II: asymmetric zero patterns

    Get PDF
    AbstractIn an earlier paper, formulae for det A as a ratio of products of principal minors of A were exhibited, for any given symmetric zero-pattern of A−1. These formulae may be presented in terms of a spanning tree of the intersection graph of certain index sets associated with the zero pattern of A−1. However, just as the determinant of a diagonal and of a triangular matrix are both the product of the diagonal entries, the symmetry of the zero pattern is not essential for these formulae. We describe here how analogous formulae for det A may be obtained in the asymmetric-zero-pattern case by introducing a directed spanning tree. We also examine the converse question of determining all possible zero patterns of A−1 which guarantee that a certain determinantal formula holds

    Silicon device performance measurements to support temperature range enhancement

    Get PDF
    Characterization results of a MOS controlled thyristor (MCTA60P60) are presented. This device is rated for 60A and for an anode to cathode voltage of -600 V. As discussed in the last report, the MCT failed during 500 V leakage tests at 200 C. In contrast to the BJT (bipolar junction transistor), MOSFET, and IGBT (insulated gate bipolar transistor) devices tested, the breakdown voltage of the MCT decreases significantly with increasing temperature
    • …
    corecore