895 research outputs found

    Low order harmonic cancellation in a grid connected multiple inverter system via current control parameter randomization

    Get PDF
    In grid connected multiple inverter systems, it is normal to synchronize the output current of each inverter to the common network voltage. Any current controller deficiencies, which result in low order harmonics, are also synchronized to the common network voltage. As a result the harmonics produced by individual converters show a high degree of correlation and tend to be additive. Each controller can be tuned to achieve a different harmonic profile so that harmonic cancellation can take place in the overall system, thus reducing the net current total harmonic distortion level. However, inter-inverter communication is required. This paper presents experimental results demonstrating an alternative approach, which is to arrange for the tuning within each inverter to be adjusted automatically with a random component. This results in a harmonic output spectrum that varies with time, but is uncorrelated with the harmonic spectrum of any other inverter in the system. The net harmonics from all the inverters undergo a degree of cancellation and the overall system yields a net improvement in power quality

    Comprehensive Solution to the Cosmological Constant, Zero-Point Energy, and Quantum Gravity Problems

    Full text link
    We present a solution to the cosmological constant, the zero-point energy, and the quantum gravity problems within a single comprehensive framework. We show that in quantum theories of gravity in which the zero-point energy density of the gravitational field is well-defined, the cosmological constant and zero-point energy problems solve each other by mutual cancellation between the cosmological constant and the matter and gravitational field zero-point energy densities. Because of this cancellation, regulation of the matter field zero-point energy density is not needed, and thus does not cause any trace anomaly to arise. We exhibit our results in two theories of gravity that are well-defined quantum-mechanically. Both of these theories are locally conformal invariant, quantum Einstein gravity in two dimensions and Weyl-tensor-based quantum conformal gravity in four dimensions (a fourth-order derivative quantum theory of the type that Bender and Mannheim have recently shown to be ghost-free and unitary). Central to our approach is the requirement that any and all departures of the geometry from Minkowski are to be brought about by quantum mechanics alone. Consequently, there have to be no fundamental classical fields, and all mass scales have to be generated by dynamical condensates. In such a situation the trace of the matter field energy-momentum tensor is zero, a constraint that obliges its cosmological constant and zero-point contributions to cancel each other identically, no matter how large they might be. Quantization of the gravitational field is caused by its coupling to quantized matter fields, with the gravitational field not needing any independent quantization of its own. With there being no a priori classical curvature, one does not have to make it compatible with quantization.Comment: Final version, to appear in General Relativity and Gravitation (the final publication is available at http://www.springerlink.com). 58 pages, revtex4, some additions to text and some added reference

    Efficiency and power enhancement of combined cycle power plants by inlet air conditioning techniques

    Get PDF
    Paper presented at the 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 30 June - 2 July, 2008.The combined gas/steam turbine cycle power plants offer an efficient and environment friendly system for electric power generation. However the power output from a gas turbine decreases significantly with increase in ambient temperature. This is a serious condition especially in hot climatic environments. Best method to tackle this situation is to condition the inlet air to the gas turbine using innovative techniques for augmenting power and efficiency improvement. This paper illustrates the influence of various inlet air conditioning techniques. A computational model of the Combined Cycle Gas Turbine (CCGT) plant was developed and applied to a typical 350 MW Combined Cycle Power Plant (CCPP), operational in Kerala, India. The model is based on thermodynamics, heat transfer and psychrometric principles. With the help of this model, a parametric analysis of combined cycle gas turbine plant for various temperatures and humidity with swirl flash technology was carried out and results plotted. Evaporative cooling and refrigerated inlet cooling techniques were compared with the swirl flash technology to establish that the swirl flash is superior to other methods in efficiency and power enhancement.vk201

    Exact Path-Integral Representations for the TT-Matrix in Nonrelativistic Potential Scattering

    Full text link
    Several path integral representations for the TT-matrix in nonrelativistic potential scattering are given which produce the complete Born series when expanded to all orders and the eikonal approximation if the quantum fluctuations are suppressed. They are obtained with the help of "phantom" degrees of freedom which take away explicit phases that diverge for asymptotic times. Energy conservation is enforced by imposing a Faddeev-Popov-like constraint in the velocity path integral. An attempt is made to evaluate stochastically the real-time path integral for potential scattering and generalizations to relativistic scattering are discussed.Comment: 6 pages, 2 figures. Contribution to the workshop "Relativistic Description of Two- and Three-Body Systems in Nuclear Physics", ETC*, October 19-23, 2009. v2: typo corrected, matches published version + additional reference

    Higher order contributions to the effective action of N=2 super Yang-Mills

    Full text link
    We apply heat kernel techniques in N=1 superspace to compute the one-loop effective action to order F5F^5 for chiral superfields coupled to a non-Abelian super Yang-Mills background. The results, when combined with those of hep-th/0210146, yield the one-loop effective action to order F5F^5 for any N=2 super Yang-Mills theory coupled to matter hypermultiplets.Comment: 23 pages, references adde

    Acoustic and Seismic Fields of Hydraulic Jumps at Varying Froude Numbers

    Get PDF
    Mechanisms that produce seismic and acoustic wavefields near rivers are poorly understood because of a lack of observations relating temporally dependent river conditions to the near-river seismoacoustic fields. This controlled study at the Harry W. Morrison Dam (HWMD) on the Boise River, Idaho, explores how temporal variation in fluvial systems affects surrounding acoustic and seismic fields. Adjusting the configuration of the HWMD changed the river bathymetry and therefore the form of the standing wave below the dam. The HWMD was adjusted to generate four distinct wave regimes that were parameterized through their dimensionless Froude numbers (Fr) and observations of the ambient seismic and acoustic wavefields at the study site. To generate detectable and coherent signals, a standing wave must exceed a threshold Fr value of 1.7, where a nonbreaking undular jump turns into a breaking weak hydraulic jump. Hydrodynamic processes may partially control the spectral content of the seismic and acoustic energies. Furthermore, spectra related to reproducible wave conditions can be used to calibrate and verify fluvial seismic and acoustic models
    corecore