1,958 research outputs found

    Genetic Diversity and Potential Function of Microbial Symbionts Associated with Newly Discovered Species of Osedax Polychaete Worms

    Get PDF
    We investigated the genetic diversity of symbiotic bacteria associated with two newly discovered species of Osedax from Monterey Canyon, CA, at 1,017-m (Osedax Monterey Bay sp. 3 "rosy" [Osedax sp. MB3]) and 381-m (Osedax Monterey Bay sp. 4 "yellow collar") depths. Quantitative PCR and clone libraries of 16S rRNA gene sequences identified differences in the compositions and abundances of bacterial phylotypes associated with the newly discovered host species and permitted comparisons between adult Osedax frankpressi and juveniles that had recently colonized whalebones implanted at 2,891 m. The newly discovered Osedax species hosted Oceanospirillales symbionts that are related to Gammaproteobacteria associated with the previously described O. frankpressi and Osedax rubiplumus (S. K. Goffredi, V. J. Orphan, G. W. Rouse, L. Jahnke, T. Embaye, K. Turk, R. Lee, and R. C. Vrijenhoek, Environ. Microbiol. 7:1369-1378, 2005). In addition, Osedax sp. MB3 hosts a diverse and abundant population of additional bacteria dominated by Epsilonproteobacteria. Ultrastructural analysis of symbiont-bearing root tissues verified the enhanced microbial diversity of Osedax sp. MB3. Root tissues from the newly described host species and O. frankpressi all exhibited collagenolytic enzyme activity, which covaried positively with the abundance of symbiont DNA and negatively with mean adult size of the host species. Members of this unusual genus of bone-eating worms may form variable associations with symbiotic bacteria that allow for the observed differences in colonization and success in whale fall environments throughout the world's oceans

    A remarkable diversity of bone-eating worms (Osedax; Siboglinidae; Annelida)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone-eating <it>Osedax </it>worms have proved to be surprisingly diverse and widespread. Including the initial description of this genus in 2004, five species that live at depths between 25 and 3,000 m in the eastern and western Pacific and in the north Atlantic have been named to date. Here, we provide molecular and morphological evidence for 12 additional evolutionary lineages from Monterey Bay, California. To assess their phylogenetic relationships and possible status as new undescribed species, we examined DNA sequences from two mitochondrial (<it>COI </it>and <it>16S </it>rRNA) and three nuclear genes (<it>H3</it>, <it>18S </it>and <it>28S </it>rRNA).</p> <p>Results</p> <p>Phylogenetic analyses identified 17 distinct evolutionary lineages. Levels of sequence divergence among the undescribed lineages were similar to those found among the named species. The 17 lineages clustered into five well-supported clades that also differed for a number of key morphological traits. Attempts to determine the evolutionary age of <it>Osedax </it>depended on prior assumptions about nucleotide substitution rates. According to one scenario involving a molecular clock calibrated for shallow marine invertebrates, <it>Osedax </it>split from its siboglinid relatives about 45 million years ago when archeocete cetaceans first appeared and then diversified during the late Oligocene and early Miocene when toothed and baleen whales appeared. Alternatively, the use of a slower clock calibrated for deep-sea annelids suggested that <it>Osedax </it>split from its siboglinid relatives during the Cretaceous and began to diversify during the Early Paleocene, at least 20 million years before the origin of large marine mammals.</p> <p>Conclusion</p> <p>To help resolve uncertainties about the evolutionary age of <it>Osedax</it>, we suggest that the fossilized bones from Cretaceous marine reptiles and late Oligocene cetaceans be examined for possible trace fossils left by <it>Osedax </it>roots. Regardless of the outcome, the present molecular evidence for strong phylogenetic concordance across five separate genes suggests that the undescribed <it>Osedax </it>lineages comprise evolutionarily significant units that have been separate from one another for many millions of years. These data coupled with ongoing morphological analyses provide a solid foundation for their future descriptions as new species.</p

    Population structure and connectivity in Indo-Pacific deep-sea mussels of the Bathymodiolus septemdierum complex

    Get PDF
    Current pressures to mine polymetallic sulfide deposits pose threats to the animal communities found at deep-sea hydrothermal vents. Management plans aimed at preserving these unusual communities require knowledge of historical and contemporary forces that shaped the distributions and connectivity of associated species. As most vent research has focused on the eastern Pacific and mid-Atlantic ridge systems less is known about Indo-Pacific vents, where mineral extraction activities are imminent. Deep-sea mussels (Bivalvia: Mytilidae) of the genus Bathymodiolus include the morphotypic species B. septemdierum, B. brevior, B. marisindicus, and B. elongatus which are among the dominant vent taxa in western Pacific back-arc basins and the Central Indian Ridge. To assess their interpopulational relationships, we examined multilocus genotypes based on DNA sequences from four nuclear and four mitochondrial genes, and allozyme variation encoded by eleven genes. Bayesian assignment methods grouped mussels from seven widespread western Pacific localities into a single cluster, whereas the Indian Ocean mussels were clearly divergent. Thus, we designate two regional metapopulations. Notably, contemporary migration rates among all sites appeared to be low despite limited population differentiation, which highlights the necessity of obtaining realistic data on recovery times and fine-scale population structure to develop and manage conservation units effectively. Future studies using population genomic methods to address these issues in a range of species will help to inform management plans aimed at mitigating potential impacts of deep-sea mining in the Indo-Pacific region

    Arms positioning in post-mastectomy proton radiation:Feasibility and development of a new arms down contouring atlas

    Get PDF
    Background and purpose: Breast cancer patients receiving radiation are traditionally positioned with both arms up, but this may not be feasible or comfortable for all patients. We evaluated the treatment planning and positioning reproducibility differences between the arms up and arms down positions for patients receiving post-mastectomy radiation therapy (PMRT) using proton pencil beam scanning (PBS). Materials and methods: Ten PMRT patients who were scheduled to receive PBS underwent CT-based treatment planning in both an arms down and a standard arms up position. An arms down contouring atlas was developed for consistency in treatment planning. Treatment plans were performed on both scans. A Wilcoxon test was applied to compare arms up and arms down metrics across patients. Five patients received treatment in the arms-down position at our institution while others were treated with the arms up. Residual set-up errors were recorded for each patient's treatment fractions and compared between positions. Results: Target structure coverage remained consistent between the arms up and arms down positions. In regard to the OAR, the heart mean and maximum doses were statistically significantly lower in the arms up position versus the arms down position, however, the absolute differences were modest. Patients demonstrated similar setup errors, less than 0.5 mm differences, in all directions. Conclusions: PBS for PMRT in the arms down position appeared stable and reproducible compared to the traditional arms up positioning. The degree of OAR sparing in the arms down group was minimally less robust but still far superior to conventional photon therapy

    Gender Differences in Modifying Lumbopelvic Motion during Hip Medial Rotation in People with Low Back Pain

    Get PDF
    Reducing increased or early lumbopelvic motion during trunk or limb movements may be an important component of low back pain treatment. The ability to reduce lumbopelvic motion may be influenced by gender. The purpose of the current study was to examine the effect of gender on the ability of people with low back pain to reduce lumbopelvic motion during hip medial rotation following physical therapy treatment. Lumbopelvic rotation and hip rotation before the start of lumbopelvic rotation were assessed pre- and posttreatment for 16 females and 15 males. Both men and women decreased lumbopelvic rotation and completed more hip rotation before the start of lumbopelvic rotation post-treatment compared to pre-treatment. Men demonstrated greater lumbopelvic rotation and completed less hip rotation before the start of lumbopelvic rotation than women both pre- and post-treatment. Both men and women reduced lumbopelvic motion relative to their starting values, but, overall, men still demonstrated greater and earlier lumbopelvic motion. These results may have important implications for understanding differences in the evaluation and treatment of men and women with low back pain

    Highly optimized tolerance and power laws in dense and sparse resource regimes

    Get PDF
    Power law cumulative frequency (P)(P) vs. event size (l)(l) distributions P(l)lαP(\geq l)\sim l^{-\alpha} are frequently cited as evidence for complexity and serve as a starting point for linking theoretical models and mechanisms with observed data. Systems exhibiting this behavior present fundamental mathematical challenges in probability and statistics. The broad span of length and time scales associated with heavy tailed processes often require special sensitivity to distinctions between discrete and continuous phenomena. A discrete Highly Optimized Tolerance (HOT) model, referred to as the Probability, Loss, Resource (PLR) model, gives the exponent α=1/d\alpha=1/d as a function of the dimension dd of the underlying substrate in the sparse resource regime. This agrees well with data for wildfires, web file sizes, and electric power outages. However, another HOT model, based on a continuous (dense) distribution of resources, predicts α=1+1/d\alpha= 1+ 1/d . In this paper we describe and analyze a third model, the cuts model, which exhibits both behaviors but in different regimes. We use the cuts model to show all three models agree in the dense resource limit. In the sparse resource regime, the continuum model breaks down, but in this case, the cuts and PLR models are described by the same exponent.Comment: 19 pages, 13 figure

    Detection of Abrin-Like and Prepropulchellin-Like Toxin Genes and Transcripts Using Whole Genome Sequencing and Full-Length Transcript Sequencing of Abrus precatorius

    Get PDF
    The sequenced genome and the leaf transcriptome of a near relative of Abrus pulchellus and Abrus precatorius was analyzed to characterize the genetic basis of toxin gene expression. From the high-quality genome assembly, a total of 26 potential coding regions were identified that contain genes with abrin-like, pulchellin-like, and agglutinin-like homology, with full-length transcripts detected in leaf tissue for 9 of the 26 coding regions. All of the toxin-like genes were identified within only five isolated regions of the genome, with each region containing 1 to 16 gene variants within each genomic region (<1 Mbp). The Abrusprecatorius cultivar sequenced here contains genes which encode for proteins that are homologous to certain abrin and prepropulchellin genes previously identified, and we observed substantial diversity of genes and predicted gene products in Abrus precatorius and previously characterized toxins. This suggests diverse toxin repertoires within Abrus, potentially the results of rapid toxin evolution.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Allopatric and Sympatric Drivers of Speciation in Alviniconcha Hydrothermal Vent Snails

    Get PDF
    Despite significant advances in our understanding of speciation in the marine environment, the mechanisms underlying evolutionary diversification in deep-sea habitats remain poorly investigated. Here, we used multigene molecular clocks and population genetic inferences to examine processes that led to the emergence of the six extant lineages of Alviniconcha snails, a key taxon inhabiting deep-sea hydrothermal vents in the Indo-Pacific Ocean. We show that both allopatric divergence through historical vicariance and ecological isolation due to niche segregation contributed to speciation in this genus. The split between the two major Alviniconcha clades (separating A. boucheti and A. marisindica from A. kojimai, A. hessleri, and A. strummeri) probably resulted from tectonic processes leading to geographic separation, whereas the splits between co-occurring species might have been influenced by ecological factors, such as the availability of specific chemosynthetic symbionts. Phylogenetic origin of the sixth species, Alviniconcha adamantis, remains uncertain, although its sister position to other extant Alviniconcha lineages indicates a possible ancestral relationship. This study lays a foundation for future genomic studies aimed at deciphering the roles of local adaptation, reproductive biology, and host–symbiont compatibility in speciation of these vent-restricted snails

    Host hybridization as a potential mechanism of lateral symbiont transfer in deep‐sea vesicomyid clams

    Get PDF
    Deep‐sea vesicomyid clams live in mutualistic symbiosis with chemosynthetic bacteria that are inherited through the maternal germ line. On evolutionary timescales, strictly vertical transmission should lead to cospeciation of host mitochondrial and symbiont lineages; nonetheless, examples of incongruent phylogenies have been reported, suggesting that symbionts are occasionally horizontally transmitted between host species. The current paradigm for vesicomyid clams holds that direct transfers cause host shifts or mixtures of symbionts. An alternative hypothesis suggests that hybridization between host species might explain symbiont transfers. Two clam species, Archivesica gigas and Phreagena soyoae, frequently co‐occur at deep‐sea hydrocarbon seeps in the eastern Pacific Ocean. Although the two species typically host gammaproteobacterial symbiont lineages marked by divergent 16S rRNA phylotypes, we identified a number of clams with the A. gigas mitotype that hosted symbionts with the P. soyoae phylotype. Demographic inference models based on genome‐wide SNP data and three Sanger sequenced gene markers provided evidence that A. gigas and P. soyoae hybridized in the past, supporting the hypothesis that hybridization might be a viable mechanism of interspecific symbiont transfer. These findings provide new perspectives on the evolution of vertically transmitted symbionts and their hosts in deep‐sea chemosynthetic environments

    Differential patterns of connectivity in Western Pacific hydrothermal vent metapopulations: A comparison of biophysical and genetic models

    Get PDF
    Hydrothermal ecosystems face threats from planned deep-seabed mining activities, despite the fact that patterns of realized connectivity among vent-associated populations and communities are still poorly understood. Since populations of vent endemic species depend on larval dispersal to maintain connectivity and resilience to habitat changes, effective conservation strategies for hydrothermal ecosystems should include assessments of metapopulation dynamics. In this study, we combined population genetic methods with biophysical models to assess strength and direction of gene flow within four species of the genus Alviniconcha (A. boucheti, A. kojimai, A. strummeri and A. hessleri) that are ecologically dominant taxa at Western Pacific hydrothermal vents. In contrast to predictions from dispersal models, among-basin migration in A. boucheti occurred predominantly in an eastward direction, while populations within the North Fiji Basin were clearly structured despite the absence of oceanographic barriers. Dispersal models and genetic data were largely in agreement for the other Alviniconcha species, suggesting limited between-basin migration for A. kojimai, lack of genetic structure in A. strummeri within the Lau Basin and restricted gene flow between northern and southern A. hessleri populations in the Mariana back-arc as a result of oceanic current conditions. Our findings show that gene flow patterns in ecologically similar congeneric species can be remarkably different and surprisingly limited depending on environmental and evolutionary contexts. These results are relevant to regional conservation planning and to considerations of similar integrated analyses for any vent metapopulations under threat from seabed mining
    corecore