141,570 research outputs found
Viscous flow of the Cu47-Ti34-Zr11-Ni8 glass forming alloy
The viscosity of the Cu47-Ti34-Zr11-Ni8 glass forming alloy was determined by beam bending experiments and by a noncontact oscillating drop technique. These viscosity data can be described with the Vogel-Fulcher-Tammann relation. Using the strong/fragile classification of glasses, Cu47-Ti34-Zr11-Ni8 is more fragile than the strong Zr-Ti-Cu-Ni-Be metallic glass formers
Continuous fiber thermoplastic prepreg
A pultrusion machine employing a corrugated impregnator vessel to immerse multiple, continuous strand, fiber tow in an impregnating material, and an adjustable metered exit orifice for the impregnator vessel to control the quantity of impregnating material retained by the impregnated fibers, is provided. An adjustable height insert retains transverse rod elements within each depression of the corrugated vessel to maintain the individual fiber tows spread and in contact with the vessel bottom. A series of elongated heating dies, transversely disposed on the pultrusion machine and having flat heating surfaces with radiused edges, ensure adequate temperature exposed dwell time and exert adequate pressure on the impregnated fiber tows, to provide the desired thickness and fiber/resin ratio in the prepreg formed. The prepreg passing through the pulling mechanism is wound on a suitable take-up spool for subsequent use. A formula is derived for determining the cross sectional area opening of the metering device. A modification in the heating die system employs a heated nip roller in lieu of one of the pressure applying flat dies
Enhanced superconductivity and lattice instability in Nb-Rh alloys
Superconductivity with transition temperature above 10 °K has been observed in a new Nb-Rh intermediate phase. The new metastable phase is obtained by liquid quenching the binary alloy or by the addition of a small percentage of carbon to form a stable ternary alloy
Sterilizable wide angle gas bearing gyro FGG334S Quarterly progress report, Jul. 1 - Oct. 1, 1967
Vibration and shock testing for spin motors for sterilizable wide angle gas bearing gyr
Formation of nanocrystals based on decomposition in the amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy
Primary crystallization and decomposition in the bulk amorphous alloy Ar41.2Ti13.8Cu12.5Ni10Be22.5 have been studied by small angle neutron scattering (SANS), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). SANS data of samples annealed isothermally at 623 K exhibit an interference peak centered at q=0.46 nm(^-1) after an incubation time of about 100 min. TEM and DSC investigations confirm that the respective periodic variation in the scattering length density is due to the formation of nanocrystals embedded in the amorphous matrix. These observations suggest that during the incubation time a chemical decomposition process occurs and the related periodic composition fluctuations give rise to the observed periodic arrangement of the nanocrystals
Testing equality of variances in the analysis of repeated measurements
The problem of comparing the precisions of two instruments using repeated measurements can be cast as an extension of the Pitman-Morgan problem of testing equality of variances of a bivariate normal distribution. Hawkins (1981) decomposes the hypothesis of equal variances in this model into two subhypotheses for which simple tests exist. For the overall hypothesis he proposes to combine the tests of the subhypotheses using Fisher's method and empirically compares the component tests and their combination with the likelihood ratio test. In this paper an attempt is made to resolve some discrepancies and puzzling conclusions in Hawkins's study and to propose simple modifications.\ud
\ud
The new tests are compared to the tests discussed by Hawkins and to each other both in terms of the finite sample power (estimated by Monte Carlo simulation) and theoretically in terms of asymptotic relative efficiencies
Computer code to interchange CDS and wave-drag geometry formats
A computer program has been developed on the PRIME minicomputer to provide an interface for the passage of aircraft configuration geometry data between the Rockwell Configuration Development System (CDS) and a wireframe geometry format used by aerodynamic design and analysis codes. The interface program allows aircraft geometry which has been developed in CDS to be directly converted to the wireframe geometry format for analysis. Geometry which has been modified in the analysis codes can be transformed back to a CDS geometry file and examined for physical viability. Previously created wireframe geometry files may also be converted into CDS geometry files. The program provides a useful link between a geometry creation and manipulation code and analysis codes by providing rapid and accurate geometry conversion
Atmospheric environment for Space Shuttle (STS-2) launch
Selected atmospheric conditions observed near Space Shuttle STS-2 launch time on November 12, 1981, or Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. Wind and thermodynamic parameters measured at the surface and aloft in the SRB descent/impact ocean area are also presented. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-2 vehicle ascent and SRB descent have been constructed. The STS-2 ascent meteorological data tape was constructed
Ground winds for Kennedy Space Center, Florida (1978 version)
Ground level runway wind statistics are presented for the Kennedy Space Center, Florida area. Crosswind, headwind, tailwind, and headwind reversal percentage frequencies are given with respect to month and hour for the Kennedy Space Center Space Shuttle runway. This document supersedes NASA CR-128995 and should be used in place of it
Transonic separated flow predictions based on a mathematically simple, nonequilibrium turbulence closure model
A mathematically simple, turbulence closure model designed to treat transonic airfoil flows even with massive separation is described. Numerical solutions of the Reynolds-averaged, Navier-Stokes equations obtained with this closure model are shown to agree well with experiments over a broad range of test conditions
- …