112,333 research outputs found
Early stages of the oxidation of metal surfaces
Photoemission cross sections were calculated for the ZnO4(-6) cluster using the self consistent-chi alpha- scattered wave theory to display the main features of the ultraviolet and X-ray photoemission data from ZnO. A solid model is suggested for an absolute photoemission intensity comparison resulting in chi alpha intensities which are roughly 70% of the experimental values. Together with the experimental data, the calculations allow a complete determination of the electronic structure of a ZnO surface
Effects of model error on control of large flexible space antenna with comparisons of decoupled and linear quadratic regulator control procedures
An analysis was performed to determine the effects of model error on the control of a large flexible space antenna. Control was achieved by employing two three-axis control-moment gyros (CMG's) located on the antenna column. State variables were estimated by including an observer in the control loop that used attitude and attitude-rate sensors on the column. Errors were assumed to exist in the individual model parameters: modal frequency, modal damping, mode slope (control-influence coefficients), and moment of inertia. Their effects on control-system performance were analyzed either for (1) nulling initial disturbances in the rigid-body modes, or (2) nulling initial disturbances in the first three flexible modes. The study includes the effects on stability, time to null, and control requirements (defined as maximum torque and total momentum), as well as on the accuracy of obtaining initial estimates of the disturbances. The effects on the transients of the undisturbed modes are also included. The results, which are compared for decoupled and linear quadratic regulator (LQR) control procedures, are shown in tabular form, parametric plots, and as sample time histories of modal-amplitude and control responses. Results of the analysis showed that the effects of model errors on the control-system performance were generally comparable for both control procedures. The effect of mode-slope error was the most serious of all model errors
Decoupled control of a long flexible beam in orbit
Control involved commanding changes in pitch attitude as well as nulling initial disturbances in the pitch and flexible modes. Control force requirements were analyzed. Also, the effects of parameter uncertainties on the decoupling process were analyzed and were found to be small. Two methods were investigated: the system was completely coupled and certain actuators were then eliminated, one by one, which resulted in some or all modes not fully controlled; specified modes of the system were excluded from the decoupling control law by employing viewer control actuators than modes in the model. In both methods, adjustments were made in the feedback gains to include the uncontrolled modes in the overall control of the system
Effects of errors on decoupled control systems
Various error sources in a decoupled control system are considered in connection with longitudinal control on a simulated externally blown jet-flap STOL aircraft. The system employed the throttle, horizontal tail, and flaps to decouple the forward velocity, pitch angle, and flight-path angle. The errors considered were: (1) imperfect knowledge of airplane aerodynamic and control characteristics; (2) imperfect measurements of airplane state variables; (3) change in flight conditions, and (4) lag in the airplane controls and in engine response. The effects of the various errors on the decoupling process were generally minor. Significant coupling in flight-path angle was caused by control lag during speed-command maneuvers. However, this coupling could be eliminated by including the control lag in the design of the decoupled system. Other error sources affected primarily the commanded response quantity
Solar powered hybrid sensor module program
Geo-orbital systems of the near future will require more sophisticated electronic and electromechanical monitoring and control systems than current satellite systems with an emphasis in the design on the electronic density and autonomy of the subsystem components. Results of a project to develop, design, and implement a proof-of-concept sensor system for space applications, with hybrids forming the active subsystem components are described. The design of the solar power hybrid sensor modules is discussed. Module construction and function are described. These modules combined low power CMOS electronics, GaAs solar cells, a crystal oscillatory standard UART data formatting, and a bidirectional optical data link into a single 1.25 x 1.25 x 0.25 inch hybrid package which has no need for electrical input or output. Several modules were built and tested. Applications of such a system for future space missions are also discussed
Dynamic and tribological analysis of a toroidal CVT
The continuously variable transmission investigated in this paper works with contacts in the elastohydrodynamic regime of lubrication, thus the tangential forces are transmitted between elements through the shearing the lubricant film. The behavior of the lubricant film when subjected to shear depends of the nature of the lubricant and the relative motion between the contacting surfaces. In this paper a non-Newtonian behavior is assumed for the lubricant while the relative motion is determined for every point on the contact area by kinematic methods. The net tractive force in the sliding direction, and the spin torque are evaluated and from these the power losses in the contacts are calculated. The dynamic behavior of the device is evaluated taking into account the rheological behavior of the lubricant
The Yang-Mills Vacuum in Coulomb Gauge in D=2+1 Dimensions
The variational approach to the Hamilton formulation of Yang-Mills theory in
Coulomb gauge developed by the present authors previously is applied to
Yang-Mills theory in 2+1 dimensions and is confronted with the existing lattice
data. We show that the resulting Dyson-Schwinger equations (DSE) yield
consistent solutions in 2+1 dimensions only for infrared divergent ghost form
factor and gluon energy. The obtained numerical solutions of the DSE reproduce
the analytic infrared results and are in satisfactory agreement with the
existing lattice date in the whole momentum range.Comment: 20 pages, 6 figure
Improved fiberglass-to-metal joint produces lighter stronger fiberglass strut
Axial tension and compression are transmitted between end fittings and fiberglass tube without depending on glass-to-metal bonding, conventional fasteners or combination of these things. Joint design significantly reduces both structural weight of strut and its cross-sectional area
A first step toward higher order chain rules in abelian functor calculus
One of the fundamental tools of undergraduate calculus is the chain rule. The
notion of higher order directional derivatives was developed by Huang,
Marcantognini, and Young, along with a corresponding higher order chain rule.
When Johnson and McCarthy established abelian functor calculus, they proved a
chain rule for functors that is analogous to the directional derivative chain
rule when . In joint work with Bauer, Johnson, and Riehl, we defined an
analogue of the iterated directional derivative and provided an inductive proof
of the analogue to the chain rule of Huang et al.
This paper consists of the initial investigation of the chain rule found in
Bauer et al., which involves a concrete computation of the case when . We
describe how to obtain the second higher order directional derivative chain
rule for abelian functors. This proof is fundamentally different in spirit from
the proof given in Bauer et al. as it relies only on properties of cross
effects and the linearization of functors
A Framework to Manage the Complex Organisation of Collaborating: Its Application to Autonomous Systems
In this paper we present an analysis of the complexities of large group
collaboration and its application to develop detailed requirements for
collaboration schema for Autonomous Systems (AS). These requirements flow from
our development of a framework for collaboration that provides a basis for
designing, supporting and managing complex collaborative systems that can be
applied and tested in various real world settings. We present the concepts of
"collaborative flow" and "working as one" as descriptive expressions of what
good collaborative teamwork can be in such scenarios. The paper considers the
application of the framework within different scenarios and discuses the
utility of the framework in modelling and supporting collaboration in complex
organisational structures
- …