4,061 research outputs found

    Quenching and Annealing in the Minority Game

    Full text link
    We report the occurrence of quenching and annealing in a version of the Minority Game (MG) in which the winning option is to join a given fraction of the population that is a free, external parameter. We compare this to the different dynamics of the Bar Attendance Model (BAM) where the updating of the attendance strategy makes use of all available information about the system and quenching does not occur. We provide an annealing schedule by which the quenched configuration of the MG reaches equilibrium and coincides with the one obtained with the BAMComment: 8 pages, 4 figure

    REGULATION OF THE IMMUNE SYSTEM BY SYNTHETIC POLYNUCLEOTIDES : III. ACTION ON ANTIGEN-REACTIVE CELLS OF THYMIC ORIGIN

    Get PDF
    Polyadenylic-polyuridylic acid complexes, a potent adjuvant to the immune response, were tested for action on thymic-influenced and bone marrow-derived lymphocytes in model systems deficient in one or the other of these cells. Adult mice, thymectomized at birth or mice treated with heterologous antithymocyte serum produced 90–95% fewer splenic rosette-forming cells than normal mice in response to an injection of sheep erythrocytes. Intravenous injection of complexes of homoribopolynucleotides, polyadenylic and polyuridylic acids, poly A:U with SRBC restored immunologic competence to NTx- or ATS-treated mice such that they produced normal or near normal levels of splenic RFC. In addition, injection of poly A:U enabled NTx mice to reject allogeneic skin grafts at the same rate as control mice with an intact thymus. Further reduction in residual thymocytes by combining neonatal thymectomy with ATS treatment reduced the number of anti-SRBC RFC induced by poly A:U. Lethally irradiated mice which received SRBC, excess bone marrow cells, and as few as 40,000 thymic lymphocytes were stimulated by poly A:U to produce RFC. No adjuvant effect was observed when irradiated mice received excess thymic lymphocytes and low doses of bone marrow cells with poly A:U. The results suggested that the adjuvant action of poly A:U was exerted on the thymic-influenced, antigen-reactive cell and that restoration of immunocompetence to NTx- or ATS-treated mice was caused by amplification of a small number of residual antigen-reactive cells which were influenced by the thymus in utero before thymectomy, or which survived treatment with ATS

    Results of Gem III Tethered Tests

    Get PDF

    A new role for BiP: closing the aqueous translocon pore during protein integration into the ER membrane

    Get PDF
    In mammalian cells, most membrane proteins are inserted cotranslationally into the ER membrane at sites termed translocons. Although each translocon forms an aqueous pore, the permeability barrier of the membrane is maintained during integration, even when the otherwise tight ribosome–translocon seal is opened to allow the cytoplasmic domain of a nascent protein to enter the cytosol. To identify the mechanism by which membrane integrity is preserved, nascent chain exposure to each side of the membrane was determined at different stages of integration by collisional quenching of a fluorescent probe in the nascent chain. Comparing integration intermediates prepared with intact, empty, or BiP-loaded microsomes revealed that the lumenal end of the translocon pore is closed by BiP in an ATP-dependent process before the opening of the cytoplasmic ribosome–translocon seal during integration. This BiP function is distinct from its previously identified role in closing ribosome-free, empty translocons because of the presence of the ribosome at the translocon and the nascent membrane protein that extends through the translocon pore and into the lumen during integration. Therefore, BiP is a key component in a sophisticated mechanism that selectively closes the lumenal end of some, but not all, translocons occupied by a nascent chain. By using collisional quenchers of different sizes, the large internal diameter of the ribosome-bound aqueous translocon pore was found to contract when BiP was required to seal the pore during integration. Therefore, closure of the pore involves substantial conformational changes in the translocon that are coupled to a complex sequence of structural rearrangements on both sides of the ER membrane involving the ribosome and BiP

    Inward Leakage in Tight-Fitting PAPRs

    Get PDF
    A combination of local flow measurement techniques and fog flow visualization was used to determine the inward leakage for two tight-fitting powered air-purifying respirators (PAPRs), the 3M Breathe-Easy PAPR and the SE 400 breathing demand PAPR. The PAPRs were mounted on a breathing machine head form, and flows were measured from the blower and into the breathing machine. Both respirators leaked a little at the beginning of inhalation, probably through their exhalation valves. In both cases, the leakage was not enough for fog to appear at the mouth of the head form

    The Interaction of the Chaperonin Tailless Complex Polypeptide 1 (Tcp1) Ring Complex (Tric) with Ribosome-Bound Nascent Chains Examined Using Photo-Cross-Linking

    Get PDF
    The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC) (also called chaperonin containing TCP1 [CCT]) is a hetero-oligomeric complex that facilitates the proper folding of many cellular proteins. To better understand the manner in which TRiC interacts with newly translated polypeptides, we examined its association with nascent chains using a photo-cross-linking approach. To this end, a series of ribosome-bound nascent chains of defined lengths was prepared using truncated mRNAs. Photoactivatable probes were incorporated into these 35S- labeled nascent chains during translation. Upon photolysis, TRiC was cross-linked to ribosome-bound polypeptides exposing at least 50–90 amino acids outside the ribosomal exit channel, indicating that the chaperonin associates with much shorter nascent chains than indicated by previous studies. Cross-links were observed for nascent chains of the cytosolic proteins actin, luciferase, and enolase, but not to ribosome-bound preprolactin. The pattern of cross-links became more complex as the nascent chain increased in length. These results suggest a chain length–dependent increase in the number of TRiC subunits involved in the interaction that is consistent with the idea that the substrate participates in subunit-specific contacts with the chaperonin. Both ribosome isolation by centrifugation through sucrose cushions and immunoprecipitation with anti-puromycin antibodies demonstrated that the photoadducts form on ribosome-bound polypeptides. Our results indicate that TRiC/CCT associates with the translating polypeptide shortly after it emerges from the ribosome and suggest a close association between the chaperonin and the translational apparatus

    Dynamical quenching and annealing in self-organization multiagent models

    Full text link
    We study the dynamics of a generalized Minority Game (GMG) and of the Bar Attendance Model (BAM) in which a number of agents self-organize to match an attendance that is fixed externally as a control parameter. We compare the usual dynamics used for the Minority Game with one for the BAM that makes a better use of the available information. We study the asymptotic states reached in both frameworks. We show that states that can be assimilated to either thermodynamic equilibrium or quenched configurations can appear in both models, but with different settings. We discuss the relevance of the parameter GG that measures the value of the prize for winning in units of the fine for losing. We also provide an annealing protocol by which the quenched configurations of the GMG can progressively be modified to reach an asymptotic equlibrium state that coincides with the one obtained with the BAM.Comment: around 20 pages, 10 figure

    Comparison of Five Methods for the Determination of Rubella Immunity

    Get PDF
    Objective: The purpose of this study was to compare the accuracy of commonly used methods for the detection of rubella immunity, especially the fully automated IMx assay

    Using CO2 to Determine Inhaled Contaminant Volumes and Blower Effectiveness in Several Types of Respirators

    Get PDF
    This experiment was conducted to determine how much contaminant could be expected to be inhaled when overbreathing several different types of respirators. These included several tight-fitting and loose-fitting powered air-purifying respirators (PAPRs) and one air-purifying respirator (APR). CO2 was used as a tracer gas in the ambient air, and several loose-and tight-fitting respirators were tested on the head form of a breathing machine. CO2 concentration in the exhaled breath was monitored as well as CO2 concentration in the ambient air. This concentration ratio was able to give a measurement of protection factor, not for the respirator necessarily, but for the wearer. Flow rates in the filter/blower inlet and breathing machine outlet were also monitored, so blower effectiveness (defined as the blower contribution to inhaled air) could also be determined. Wearer protection factors were found to range from 1.1 for the Racal AirMate loose-fitting PAPR to infinity for the 3M Hood, 3M Breath-Easy PAPR, and SE 400 breath-responsive PAPR. Inhaled contaminant volumes depended on tidal volume but ranged from 2.02 L to 0 L for the same respirators, respectively. Blower effectiveness was about 1.0 for tight-fitting APRs, 0.18 for the Racal, and greater than 1.0 for two of the loose-fitting PAPRs. With blower effectiveness greater than 1.0, some blower flow during the exhalation phase contributes to the subsequent inhalation. Results from this experiment point to different ways to measure respirator efficacy
    corecore