366 research outputs found

    Oregon Psychologists on Prescriptive Authority: Divided Views and Little Knowledge

    Get PDF
    With over half of all states having considered legislating prescriptive authority, an immense amount of time and money has been invested. The literature is limited in terms of understanding if opinions toward prescriptive authority are grounded in knowledge and what implications that has for altering these opinions. Following a veto of a prescriptive authority bill in Oregon, 399 licensed Oregon clinical psychologists were surveyed regarding their attitudes and knowledge. In terms of knowledge, only 6.5% knew which three states/territories currently have prescriptive authority and 70.4% were unfamiliar with any of the prerequisites for postdoctoral training in psychopharmacology. Reflecting division, 43.4% were in favor, 25.4% were undecided, and 31.2% were in opposition to broadening privileges for psychologists. Further, only 15.2% expressed interest in pursuing training or 6.7% in becoming prescribers. Data on access, training, and legislative costs were presented to participants in the education condition. These participants showed significant gains in their knowledge across all domains and their opinions shifted only in these specific areas leaving their general stance on the issue unchanged. In contrast to ardent supporters who argue that their ā€œdata should provide reassurance to psychologists spearheading legislative initiativesā€ because of high approval ratings (Sammons et al., 2000, p. 608), our data suggest disagreement amongst a group of professionals who are not particularly well-informed, nor interested in becoming prescribers. Future work should investigate whether expanding the data relevant to other facets of the argument contributes to further targeted change or an overall change in opinion toward prescriptive authority

    Eigenstateā€“Specific Temperatures in Twoā€“Level Paramagnetic Spin Lattices

    Get PDF
    Increasing interest in the thermodynamics of small and/or isolated systems, in combination with recent observations of negative temperatures of atoms in ultracold optical lattices, has stimulated the need for estimating the conventional, canonical temperature Tconvc of systems in equilibrium with heat baths using eigenstate-specific temperatures (ESTs). Four distinct ESTsā€”continuous canonical, discrete canonical, continuous microcanonical, and discrete microcanonicalā€”are accordingly derived for two-level paramagnetic spin lattices (PSLs) in external magnetic fields. At large N, the four ESTs are intensive, equal to Tconvc, and obey all four laws of thermodynamics. In contrast, for N \u3c 1000, the ESTs of most PSL eigenstates are non-intensive, differ from Tconvc, and violate each of the thermodynamic laws. Hence, in spite of their similarities to Tconvc at large N, the ESTs are not true thermodynamic temperatures. Even so, each of the ESTs manifests a unique functional dependence on energy which clearly specifies the magnitude and direction of their deviation from Tconvc; the ESTs are thus good temperature estimators for small PSLs. The thermodynamic uncertainty relation is obeyed only by the ESTs of small canonical PSLs; it is violated by large canonical PSLs and by microcanonical PSLs of any size. The ESTs of population-inverted eigenstates are negative (positive) when calculated using Boltzmann (Gibbs) entropies; the thermodynamic implications of these entropically induced differences in sign are discussed in light of adiabatic invariance of the entropies. Potential applications of the four ESTs to nanothermometers and to systems with long-range interactions are discussed

    Alternative Options for Complex, Recurrent Pain States Using Cannabinoids, Psilocybin, and Ketamine: A Narrative Review of Clinical Evidence

    Get PDF
    With emerging information about the potential for morbidity and reduced life expectancy with long-term use of opioids, it is logical to evaluate nonopioid analgesic treatments to manage pain states. Combinations of drugs can provide additive and/or synergistic effects that can benefit the management of pain states. In this regard, tetrahydrocannabinol (THC) and cannabidiol (CBD) modulate nociceptive signals and have been studied for chronic pain treatment. Psilocybin, commonly known as magic mushrooms , works at the serotonin receptor, 5-HT. Psilocybin has been found in current studies to help with migraines since it has a tryptamine structure and works similarly to triptans. Psilocybin also has the potential for use in chronic pain treatment. However, the studies that have looked at alternative plant-based medications such as THC, CBD, and psilocybin have been small in terms of their sample size and may not consider the demographic or genetic differences in the population because of their small sample sizes. At present, it is unclear whether the effects reported in these studies translate to the general population or even are significant. In summary, additional studies are warranted to evaluate chronic pain management with alternative and combinations of medications in the treatment of chronic pain

    Prescription Stimulants in College and Medical Students: A Narrative Review of Misuse, Cognitive Impact, and Adverse Effects

    Get PDF
    Stimulants are effective in treating attention-deficit/hyperactivity disorder (ADHD). Psychiatrist Charles Bradley first made this discovery in 1937 when he found that children treated with amphetamines showed improvements in school performance and behavior. Between 1995 and 2008, stimulants to treat ADHD increased six-fold among American adults and adolescents at an annual rate of 6.5%. Stimulants without a prescription, known as nonmedical use or misuse, have also increased. The highest rates of nonmedical prescription drug misuse in the United States are seen most notably in young adults between 18 and 25 years, based on data from the Substance Abuse and Mental Health Services Administration in 2021. Aside from undergraduate students, nonmedical prescription stimulant use is prevalent among medical students worldwide. A recent literature review reported the utilization of stimulants without a prescription in 970 out of 11,029 medical students. The percentages of medical students across the country misusing stimulants varied from 5.2% to 47.4%. Academic enhancement, reported in 50% to 89% of college students with stimulant misuse, is the most common reason for nonmedical stimulant use. With the increasing use of stimulants among adolescents and adults, it is unclear what long-term outcomes will be since little data are available that describe differences in how side effects are experienced for prescribed and non-prescribed users. The present narrative review focuses on these adverse effects in this population and the reasonings behind misuse and nonmedical use

    Mechanotransductive feedback control of endothelial cell motility and vascular morphogenesis

    Get PDF
    Vascular morphogenesis requires persistent endothelial cell motility that is responsive to diverse and dynamic mechanical stimuli. Here, we interrogated the mechanotransductive feedback dynamics that govern endothelial cell motility and vascular morphogenesis. We show that the transcriptional regulators, YAP and TAZ, are activated by mechanical cues to transcriptionally limit cytoskeletal and focal adhesion maturation, forming a conserved mechanotransductive feedback loop that mediates human endothelial cell motility in vitro and zebrafish intersegmental vessel (ISV) morphogenesis in vivo. This feedback loop closes in 4 hours, achieving cytoskeletal equilibrium in 8 hours. Feedback loop inhibition arrested endothelial cell migration in vitro and ISV morphogenesis in vivo. Inhibitor washout at 3 hrs, prior to feedback loop closure, restored vessel growth, but washout at 8 hours, longer than the feedback timescale, did not, establishing lower and upper bounds for feedback kinetics in vivo. Mechanistically, YAP and TAZ induced transcriptional suppression of myosin II activity to maintain dynamic cytoskeletal equilibria. Together, these data establish the mechanoresponsive dynamics of a transcriptional feedback loop necessary for persistent endothelial cell migration and vascular morphogenesis

    Power to identify a genetic predictor of antihypertensive drug response using different methods to measure blood pressure response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine whether office, home, ambulatory daytime and nighttime blood pressure (BP) responses to antihypertensive drug therapy measure the same signal and which method provides greatest power to identify genetic predictors of BP response.</p> <p>Methods</p> <p>We analyzed office, home, ambulatory daytime and nighttime BP responses in hypertensive adults randomized to atenolol (N = 242) or hydrochlorothiazide (N = 257) in the Pharmacogenomic Evaluation of Antihypertensive Responses Study. Since different measured BP responses may have different predictors, we tested the "same signal" model by using linear regression methods to determine whether known predictors of BP response depend on the method of BP measurement. We estimated signal-to-noise ratios and compared power to identify a genetic polymorphism predicting BP response measured by each method separately and by weighted averages of multiple methods.</p> <p>Results</p> <p>After adjustment for pretreatment BP level, known predictors of BP response including plasma renin activity, race, and sex were independent of the method of BP measurement. Signal-to-noise ratios were more than 2-fold greater for home and ambulatory daytime BP responses than for office and ambulatory nighttime BP responses and up to 11-fold greater for weighted averages of all four methods. Power to identify a genetic polymorphism predicting BP response was directly related to the signal-to-noise ratio and, therefore, greatest with the weighted averages.</p> <p>Conclusion</p> <p>Since different methods of measuring BP response to antihypertensive drug therapy measure the same signal, weighted averages of the BP responses measured by multiple methods minimize measurement error and optimize power to identify genetic predictors of BP response.</p

    Effects of genetic variation in H3K79 methylation regulatory genes on clinical blood pressure and blood pressure response to hydrochlorothiazide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nearly one-third of the United States adult population suffers from hypertension. Hydrochlorothiazide (HCTZ), one of the most commonly used medications to treat hypertension, has variable efficacy. The renal epithelial sodium channel (ENaC) provides a mechanism for fine-tuning sodium excretion, and is a major regulator of blood pressure homeostasis. <it>DOT1L, MLLT3, SIRT1</it>, and <it>SGK1 </it>encode genes in a pathway that controls methylation of the histone H3 globular domain at lysine 79 (H3K79), thereby modulating expression of the ENaCĪ± subunit. This study aimed to determine the role of variation in these regulatory genes on blood pressure response to HCTZ, and secondarily, untreated blood pressure.</p> <p>Methods</p> <p>We investigated associations between genetic variations in this candidate pathway and HCTZ blood pressure response in two separate hypertensive cohorts (clinicaltrials.gov NCT00246519 and NCT00005520). In a secondary, exploratory analysis, we measured associations between these same genetic variations and untreated blood pressure. Associations were measured by linear regression, with only associations with <it>P </it>ā‰¤ 0.01 in one cohort and replication by <it>P </it>ā‰¤ 0.05 in the other cohort considered significant.</p> <p>Results</p> <p>In one cohort, a polymorphism in <it>DOT1L </it>(rs2269879) was strongly associated with greater systolic (<it>P </it>= 0.0002) and diastolic (<it>P </it>= 0.0016) blood pressure response to hydrochlorothiazide in Caucasians. However, this association was not replicated in the other cohort. When untreated blood pressure levels were analyzed, we found directionally similar associations between a polymorphism in <it>MLLT3 </it>(rs12350051) and greater untreated systolic (<it>P </it>< 0.01 in both cohorts) and diastolic (<it>P </it>< 0.05 in both cohorts) blood pressure levels in both cohorts. However, when further replication was attempted in a third hypertensive cohort and in smaller, normotensive samples, significant associations were not observed.</p> <p>Conclusions</p> <p>Our data suggest polymorphisms in <it>DOT1L, MLLT3, SIRT1</it>, and <it>SGK1 </it>are not likely associated with blood pressure response to HCTZ. However, a possibility exists that rs2269879 in <it>DOT1L </it>could be associated with HCTZ response in Caucasians. Additionally, exploratory analyses suggest rs12350051 in <it>MLLT3 </it>may be associated with untreated blood pressure in African-Americans. Replication efforts are needed to verify roles for these polymorphisms in human blood pressure regulation.</p

    Conductance Ratios and Cellular Identity

    Get PDF
    Recent experimental evidence suggests that coordinated expression of ion channels plays a role in constraining neuronal electrical activity. In particular, each neuronal cell type of the crustacean stomatogastric ganglion exhibits a unique set of positive linear correlations between ionic membrane conductances. These data suggest a causal relationship between expressed conductance correlations and features of cellular identity, namely electrical activity type. To test this idea, we used an existing database of conductance-based model neurons. We partitioned this database based on various measures of intrinsic activity, to approximate distinctions between biological cell types. We then tested individual conductance pairs for linear dependence to identify correlations. Contrary to experimental evidence, in which all conductance correlations are positive, 32% of correlations seen in this database were negative relationships. In addition, 80% of correlations seen here involved at least one calcium conductance, which have been difficult to measure experimentally. Similar to experimental results, each activity type investigated had a unique combination of correlated conductances. Finally, we found that populations of models that conform to a specific conductance correlation have a higher likelihood of exhibiting a particular feature of electrical activity. We conclude that regulating conductance ratios can support proper electrical activity of a wide range of cell types, particularly when the identity of the cell is well-defined by one or two features of its activity. Furthermore, we predict that previously unseen negative correlations and correlations involving calcium conductances are biologically plausible
    • ā€¦
    corecore