6,116 research outputs found
Physiological Studies of Heat Stress Acclimation During a Specific Exercise Regimen
Eleven subjects were used to determine if the exercise regimen of racquetball could be used as a heat stress acclimator. Core temperature, skin temperature, sweat production, and weight loss were recorded during a racquetball match. Skin and core temperatures were determined by using thermistors. Sweat was collected with modified stress electrodes. Weight loss was recorded by comparing nude weights at the beginning and end of a match. The results indicated that an hour of strenuous racquetball play caused a significant increase in core temperature with subsequent sweating which resulted in a significant decrease in skin temperature and weight loss. The exercise regimen of racquetball can act as a good heat stress acclimator because it produces sufficiently high levels of hyperthermia
Lagrangian Relaxation for MAP Estimation in Graphical Models
We develop a general framework for MAP estimation in discrete and Gaussian
graphical models using Lagrangian relaxation techniques. The key idea is to
reformulate an intractable estimation problem as one defined on a more
tractable graph, but subject to additional constraints. Relaxing these
constraints gives a tractable dual problem, one defined by a thin graph, which
is then optimized by an iterative procedure. When this iterative optimization
leads to a consistent estimate, one which also satisfies the constraints, then
it corresponds to an optimal MAP estimate of the original model. Otherwise
there is a ``duality gap'', and we obtain a bound on the optimal solution.
Thus, our approach combines convex optimization with dynamic programming
techniques applicable for thin graphs. The popular tree-reweighted max-product
(TRMP) method may be seen as solving a particular class of such relaxations,
where the intractable graph is relaxed to a set of spanning trees. We also
consider relaxations to a set of small induced subgraphs, thin subgraphs (e.g.
loops), and a connected tree obtained by ``unwinding'' cycles. In addition, we
propose a new class of multiscale relaxations that introduce ``summary''
variables. The potential benefits of such generalizations include: reducing or
eliminating the ``duality gap'' in hard problems, reducing the number or
Lagrange multipliers in the dual problem, and accelerating convergence of the
iterative optimization procedure.Comment: 10 pages, presented at 45th Allerton conference on communication,
control and computing, to appear in proceeding
Integrative and Conjugative Elements (ICEs): What They Do and How They Work
Horizontal gene transfer plays a major role in microbial evolution, allowing microbes to acquire new genes and phenotypes. Integrative and conjugative elements (ICEs, a.k.a. conjugative transposons) are modular mobile genetic elements integrated into a host genome and are passively propagated during chromosomal replication and cell division. Induction of ICE gene expression leads to excision, production of the conserved conjugation machinery (a type IV secretion system), and the potential to transfer DNA to appropriate recipients. ICEs typically contain cargo genes that are not usually related to the ICE life cycle and that confer phenotypes to host cells. We summarize the life cycle and discovery of ICEs, some of the regulatory mechanisms, and how the types of cargo have influenced our view of ICEs. We discuss how ICEs can acquire new cargo genes and describe challenges to the field and various perspectives on ICE biology
Using Insights from Psychology and Language to Improve How People Reason with Description Logics
Inspired by insights from theories of human reasoning and language, we propose additions to the Manchester OWL Syntax to improve comprehensibility. These additions cover: functional and inverse functional properties, negated conjunction, the definition of exceptions, and existential and universal restrictions. By means of an empirical study, we demonstrate the effectiveness of a number of these additions, in particular: the use of solely to clarify the uniqueness of the object in a functional property; the replacement of and with intersection in conjunction, which was particularly beneficial in negated conjunction; the use of except as a substitute for and not; and the replacement of some with including and only with noneOrOnly, which helped in certain situations to clarify the nature of these restrictions
The Composition of the Cell Envelope Affects Conjugation in Bacillus subtilis
Conjugation in bacteria is the contact-dependent transfer of DNA from one cell to another via donor-encoded conjugation machinery. It is a major type of horizontal gene transfer between bacteria. Conjugation of the integrative and conjugative element ICEBs1 into Bacillus subtilis is affected by the composition of phospholipids in the cell membranes of the donor and recipient. We found that reduction (or elimination) of lysyl-phosphatidylglycerol caused by loss of mprF caused a decrease in conjugation efficiency. Conversely, alterations that caused an increase in lysyl-phosphatidylglycerol, including loss of ugtP or overproduction of mprF, caused an increase in conjugation efficiency. In addition, we found that mutations that alter production of other phospholipids, e.g., loss of clsA and yfnI, also affected conjugation, apparently without substantively altering levels of lysyl-phosphatidylglycerol, indicating that there are multiple pathways by which changes to the cell envelope affect conjugation. We found that the contribution of mprF to conjugation was affected by the chemical environment. Wild-type cells were generally more responsive to addition of anions that enhanced conjugation, whereas mprF mutant cells were more sensitive to combinations of anions that inhibited conjugation at pH 7. Our results indicate that mprF and lysyl-phosphatidylglycerol allow cells to maintain relatively consistent conjugation efficiencies under a variety of ionic conditions.
IMPORTANCE Horizontal gene transfer is a driving force in microbial evolution, enabling cells that receive DNA to acquire new genes and phenotypes. Conjugation, the contact-dependent transfer of DNA from a donor to a recipient by a donor-encoded secretion machine, is a prevalent type of horizontal gene transfer. Although critically important, it is not well understood how the recipient influences the success of conjugation. We found that the composition of phospholipids in the membranes of donors and recipients influences the success of transfer of the integrative and conjugative element ICEBs1 in Bacillus subtilis. Specifically, the presence of lysyl-phosphatidylglycerol enables relatively constant conjugation efficiencies in a range of diverse chemical environments.National Institutes of Health (U.S.
The Inequitable Conduct Defense Lives On: 2003 Federal Circuit Decisions and Their Impact, 3 J. Marshall Rev. Intell. Prop. L. 189 (2004)
The inequitable conduct defense remains a viable defense in patent litigation today, as illustrated in four 2003 Federal Circuit decisions. Though an alleged patent infringer must establish the elements of materiality and intent for a valid inequitable conduct defense, recent Federal Circuit decisions indicate that certain factual underpinnings bearing on materiality can raise an inference of intent. To most effectively counter this inference of intent, a plausible explanation for the questioned conduct should be provided by the patentee. However, in providing such plausible explanation, the patentee runs the risk of waiving privileged communications, which in turn may result in far more intrusive and costly discovery
On the Electronic Transport Mechanism in Conducting Polymer Nanofibers
Here, we present theoretical analysis of electron transport in polyaniline
based (PANi) nanofibers assuming the metalic state of the material. To build up
this theory we treat conducting polymers as a special kind of granular metals,
and we apply the quantum theory of conduction in mesoscopic systems to describe
the transport between metallic-like granules. Our results show that the concept
of resonance electron tunneling as the predominating mechanism providing charge
transport between the grains is supported with recent experiments on the
electrical characterization of single PANi nanofibers. By contacting the
proposed theory with the experimental data we estimate some important
parameters characterizing the electron transport in these materials. Also, we
discuss the origin of rectifying features observed in current-voltage
characteristics of fibers with varying cross-sectional areas.Comment: 5 pages, 1 figure, accepted for publication in Phys. Rev. B, Vol.72,
xxxx (2005
Identification of a Single Strand Origin of Replication in the Integrative and Conjugative Element ICEBs1 of Bacillus subtilis
We identified a functional single strand origin of replication (sso) in the integrative and conjugative element ICEBs1 of Bacillus subtilis. Integrative and conjugative elements (ICEs, also known as conjugative transposons) are DNA elements typically found integrated into a bacterial chromosome where they are transmitted to daughter cells by chromosomal replication and cell division. Under certain conditions, ICEs become activated and excise from the host chromosome and can transfer to neighboring cells via the element-encoded conjugation machinery. Activated ICEBs1 undergoes autonomous rolling circle replication that is needed for the maintenance of the excised element in growing and dividing cells. Rolling circle replication, used by many plasmids and phages, generates single-stranded DNA (ssDNA). In many cases, the presence of an sso enhances the conversion of the ssDNA to double-stranded DNA (dsDNA) by enabling priming of synthesis of the second DNA strand. We initially identified sso1 in ICEBs1 based on sequence similarity to the sso of an RCR plasmid. Several functional assays confirmed Sso activity. Genetic analyses indicated that ICEBs1 uses sso1 and at least one other region for second strand DNA synthesis. We found that Sso activity was important for two key aspects of the ICEBs1 lifecycle: 1) maintenance of the plasmid form of ICEBs1 in cells after excision from the chromosome, and 2) stable acquisition of ICEBs1 following transfer to a new host. We identified sequences similar to known plasmid sso's in several other ICEs. Together, our results indicate that many other ICEs contain at least one single strand origin of replication, that these ICEs likely undergo autonomous replication, and that replication contributes to the stability and spread of these elements.National Institute of General Medical Sciences (U.S.) (Award R01GM050895)National Institute of General Medical Sciences (U.S.) (Pre-Doctoral Training Grant T32GM007287
Instrumentation for the Characterization of Inflatable Structures
Current entry, descent, and landing technologies are not practical for heavy payloads due to mass and volume constraints dictated by limitations imposed by launch vehicle fairings. Therefore, new technologies are now being explored to provide a mass- and volume-efficient solution for heavy payload capabilities, including Inflatable Aerodynamic Decelerators (IAD) [1]. Consideration of IADs for space applications has prompted the development of instrumentation systems for integration with flexible structures to characterize system response to flight-like environment testing. This development opportunity faces many challenges specific to inflatable structures in extreme environments, including but not limited to physical flexibility, packaging, temperature, structural integration and data acquisition [2]. In the spring of 2012, two large scale Hypersonic Inflatable Aerodynamic Decelerators (HIAD) will be tested in the National Full-Scale Aerodynamics Complex s 40 by 80 wind tunnel at NASA Ames Research Center. The test series will characterize the performance of a 3.0 m and 6.0 m HIAD at various angles of attack and levels of inflation during flight-like loading. To analyze the performance of these inflatable test articles as they undergo aerodynamic loading, many instrumentation systems have been researched and developed. These systems will utilize new experimental sensing systems developed by the HIAD ground test campaign instrumentation team, in addition to traditional wind tunnel sensing techniques in an effort to improve test article characterization and model validation. During the 2012 test series the instrumentation systems will target inflatable aeroshell static and dynamic deformation, structural strap loading, surface pressure distribution, localized skin deflection, and torus inflation pressure. This paper will offer an overview of inflatable structure instrumentation, and provide detail into the design and implementation of the sensors systems that will be utilized during the 2012 HIAD ground test campaign
Chemical Topography of Efferent Projections from the Median Preoptic Nucleus to Pontine Monoaminergic Cell Groups in the Rat
This study examined efferent output from the median preoptic nucleus (MNPO) to pontine noradrenergic and serotonergic cell groups using an anterograde tracing technique (Phaseolus vulgaris leucoagglutinin, PHA-L) combined with glucose oxidase immunocytochemistry to serotonin (5-HT) or to dopamine-beta-hydroxylase (DBH). Injections of PHA-L into the ventral MNPO resulted in moderate axonal labeling within the region of the B7 and B8 serotonergic groups in the dorsal raphe. PHA-L labeled fibers and punctate processes were observed in close apposition to many of the 5-HT immunoreactive neurons in these regions. In contrast, sparse terminal labeling was found within the B5 group in the raphe pontis nucleus, and only trace fiber labeling observed in the B3 and B6 groups. Efferents from the MNPO also provided moderate innervation to the A6 and A7 noradrenergic groups. PHA-L labeled punctate processes were found most frequently in close apposition to DBH-immunoreactive neurons at mid- to caudal levels of the locus coeruleus. Some labeled axons were also present within the A7 and A5 groups. Additionally, a close apposition between labeled MNPO efferents and 5-HT fibers within the lateral parabrachial nucleus was observed. The results indicate the MNPO provides a topographic innervation of monoaminergic groups in the upper brainstem
- …