13,586 research outputs found

    Conceptual design and analysis of orbital cryogenic liquid storage and supply systems

    Get PDF
    A wide variety of orbital cryogenic liquid storage and supply systems are defined in NASA and DOD long-range plans. These systems include small cooling applications, large chemical and electrical orbit transfer vehicles and supply tankers. All have the common requirements of low-g fluid management to accomplish gas-free liquid expulsion and efficient thermal control to manage heat leak and tank pressure. A preliminary design study was performed to evaluate tanks ranging from 0.6 to 37.4 cu m (22 to 1320 cu ft). Liquids of interest were hydrogen, oxygen, methane, argon and helium. Conceptual designs were generated for each tank system and fluid dynamic, thermal and structural analyses were performed for Shuttle compatible operations. Design trades considered the paradox of conservative support structure and minimum thermal input. Orbital performance and weight data were developed, and a technology evaluation was completed

    Can the Retail Investor Survive the Fiduciary Standard?

    Get PDF
    (Excerpt) For the retail investor in the United States, generally two options are available for seeking professional investment advice to reach their financial goals: hiring a broker-dealer or an investment adviser. Each entity is governed under separate regulatory schemes. With the recent financial collapse and the ensuing jump to regulation, there is a push to make a uniform standard for all investment recommendations—a fiduciary standard—that would be a one-size-fits-all reaction, leading to less access and higher costs for the smaller investor. Continued regulation of more disclosure and transparency in the investment sales process, stronger requirements of the investment sales person, proliferation of common sense education of the investing public in handling their own money, and swifter punishment under existing rules of bad actors should be the regulatory focus

    Can the Retail Investor Survive the Fiduciary Standard?

    Get PDF
    (Excerpt) For the retail investor in the United States, generally two options are available for seeking professional investment advice to reach their financial goals: hiring a broker-dealer or an investment adviser. Each entity is governed under separate regulatory schemes. With the recent financial collapse and the ensuing jump to regulation, there is a push to make a uniform standard for all investment recommendations—a fiduciary standard—that would be a one-size-fits-all reaction, leading to less access and higher costs for the smaller investor. Continued regulation of more disclosure and transparency in the investment sales process, stronger requirements of the investment sales person, proliferation of common sense education of the investing public in handling their own money, and swifter punishment under existing rules of bad actors should be the regulatory focus

    Applicability of ERTS-1 to Montana geology

    Get PDF
    The author has identified the following significant results. Late autumn imagery provides the advantages of topographic shadow enhancement and low cloud cover. Mapping of rock units was done locally with good results for alluvium, basin fill, volcanics, inclined Paleozoic and Mesozoic beds, and host strata of bentonite beds. Folds, intrusive domes, and even dip directions were mapped where differential erosion was significant. However, mapping was not possible for belt strata, was difficult for granite, and was hindered by conifers compared to grass cover. Expansion of local mapping required geologic control and encountered significant areas unmappable from ERTS imagery. Annotation of lineaments provided much new geologic data. By extrapolating test site comparisons, it is inferred that 27 percent of some 1200 lineaments mapped from western Montana represent unknown faults. The remainder appear to be localized mainly by undiscovered faults and sets of minor faults or joints

    Applicability of ERTS-1 to lineament and photogeologic mapping in Montana: Preliminary report

    Get PDF
    A lineament map prepared from a mosaic of western Montana shows about 85 lines not represented on the state geologic map, including elements of a northeast-trending set through central western Montana which merit ground truth checking and consideration in regional structural analysis. Experimental fold annotation resulted in a significant local correction to the state geologic map. Photogeologic mapping studies produced only limited success in identification of rock types, but they did result in the precise delineation of a late Cretaceous or early Tertiary volcanic field (Adel Mountain field) and the mapping of a connection between two granitic bodies shown on the state map. Imagery was used successfully to map clay pans associated with bentonite beds in gently dipping Bearpaw Shale. It is already apparent that ERTS imagery should be used to facilitate preparation of a much needed statewide tectonic map and that satellite imagery mapping, aided by ground calibration, provides and economical means to discover and correct errors in the state geologic map

    The Magnetic Fields of Classical T Tauri Stars

    Full text link
    We report new magnetic field measurements for 14 classical T Tauri stars (CTTSs). We combine these data with one previous field determination in order to compare our observed field strengths with the field strengths predicted by magnetospheric accretion models. We use literature data on the stellar mass, radius, rotation period, and disk accretion rate to predict the field strength that should be present on each of our stars according to these magnetospheric accretion models. We show that our measured field values do not correlate with the field strengths predicted by simple magnetospheric accretion theory. We also use our field strength measurements and literature X-ray luminosity data to test a recent relationship expressing X-ray luminosity as a function of surface magnetic flux derived from various solar feature and main sequence star measurements. We find that the T Tauri stars we have observed have weaker than expected X-ray emission by over an order of magnitude on average using this relationship. We suggest the cause for this is actually a result of the very strong fields on these stars which decreases the efficiency with which gas motions in the photosphere can tangle magnetic flux tubes in the corona.Comment: 25 pages, 5 figure

    Convective Dynamos and the Minimum X-ray Flux in Main Sequence Stars

    Full text link
    The objective of this paper is to investigate whether a convective dynamo can account quantitatively for the observed lower limit of X-ray surface flux in solar-type main sequence stars. Our approach is to use 3D numerical simulations of a turbulent dynamo driven by convection to characterize the dynamic behavior, magnetic field strengths, and filling factors in a non-rotating stratified medium, and to predict these magnetic properties at the surface of cool stars. We use simple applications of stellar structure theory for the convective envelopes of main-sequence stars to scale our simulations to the outer layers of stars in the F0--M0 spectral range, which allows us to estimate the unsigned magnetic flux on the surface of non-rotating reference stars. With these estimates we use the recent results of \citet{Pevtsov03} to predict the level of X-ray emission from such a turbulent dynamo, and find that our results compare well with observed lower limits of surface X-ray flux. If we scale our predicted X-ray fluxes to \ion{Mg}{2} fluxes we also find good agreement with the observed lower limit of chromospheric emission in K dwarfs. This suggests that dynamo action from a convecting, non-rotating plasma is a viable alternative to acoustic heating models as an explanation for the basal emission level seen in chromospheric, transition region, and coronal diagnostics from late-type stars.Comment: ApJ, accepted, 30 pages with 7 figure

    Hot gas ingestion characteristics and flow visualization of a vectored thrust STOVL concept

    Get PDF
    A 9.2 percent scale short takeoff and vertical landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the NASA Lewis Research Center 9- by 15-Foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issue for advanced short takeoff and vertical landing aircraft. The Phase 1 test program, conducted by NASA Lewis and McDonnell Douglas Corporation, evaluated the hot ingestion phenomena and control techniques and Phase 2 test program which was conducted by NASA Lewis are both reported. The Phase 2 program was conducted at exhaust nozzles temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/lift improvement devices which reduced the hot gas ingestion. The model support system had four degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity for Phase 1 was varied from 8 to 90 kn, with primary data taken in the 8 to 23 kn headwind velocity range. Phase 2 headwind velocity varied from 10 to 23 kn. Results of both Phase 1 and 2 are presented. A description of the model, facility, a new model support system, and a sheet laser illumination system are also provided. Results are presented over a range of main landing gear height (model height) above the ground plane at a 10 kn headwind velocity. The results contain the compressor face pressure and temperature distortions, total pressure recovery, compressor face temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane temperature and pressure distributions, model airframe heating, and the location of the ground flow separation. Results from the sheet laser flow visualization test are also shown

    The Angular Momentum Content and Evolution of Class I and Flat-Spectrum Protostars

    Full text link
    We report on the angular momentum content of heavily embedded protostars based on our analysis of the projected rotation velocities (v sin i s) of 38 Class I/flat spectrum young stellar objects presented by Doppmann et al (2005). After correcting for projection effects, we find that infrared-selected Class I/flat spectrum objects rotate significantly more quickly (median equatorial rotation velocity ~ 38 km/sec) than Classical T Tauri stars (CTTSs; median equatorial rotation velocity ~ 18 km/sec) in the Rho Ophiuchi and Taurus-Aurigae regions. The detected difference in rotation speeds between Class I/flat spectrum sources and CTTSs proves difficult to explain without some mechanism which transfers angular momentum out of the protostar between the two phases. Assuming Class I/flat spectrum sources possess physical characteristics (M_*,R_*,B_*) typical of pre-main sequence stars, fully disk locked Class I objects should have co-rotation radii within their protostellar disks that match well (within 30%) with the predicted magnetic coupling radii of Shu et al (1994). The factor of two difference in rotation rates between Class I/flat spectrum and CTTS sources, when interpreted in the context of disk locking models, also imply a factor of 5 or greater difference in mass accretion rates between the two phases.Comment: 13 pages, 6 figures. Accepted for publication in the Astronomical Journal (tentatively for June 2005 edition
    corecore