7 research outputs found

    Efficacious Intermittent Dosing of a Novel JAK2 Inhibitor in Mouse Models of Polycythemia Vera

    Get PDF
    A high percentage of patients with the myeloproliferative disorder polycythemia vera (PV) harbor a Val617→Phe activating mutation in the Janus kinase 2 (JAK2) gene, and both cell culture and mouse models have established a functional role for this mutation in the development of this disease. We describe the properties of MRLB-11055, a highly potent inhibitor of both the WT and V617F forms of JAK2, that has therapeutic efficacy in erythropoietin (EPO)-driven and JAK2V617F-driven mouse models of PV. In cultured cells, MRLB-11055 blocked proliferation and induced apoptosis in a manner consistent with JAK2 pathway inhibition. MRLB-11055 effectively prevented EPO-induced STAT5 activation in the peripheral blood of acutely dosed mice, and could prevent EPO-induced splenomegaly and erythrocytosis in chronically dosed mice. In a bone marrow reconstituted JAK2V617F-luciferase murine PV model, MRLB-11055 rapidly reduced the burden of JAK2V617F-expressing cells from both the spleen and the bone marrow. Using real-time in vivo imaging, we examined the kinetics of disease regression and resurgence, enabling the development of an intermittent dosing schedule that achieved significant reductions in both erythroid and myeloid populations with minimal impact on lymphoid cells. Our studies provide a rationale for the use of non-continuous treatment to provide optimal therapy for PV patients

    A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference

    No full text
    RNA interference (RNAi) has recently emerged as a specific and efficient method to silence gene expression in mammalian cells either by transfection of short interfering RNAs (siRNAs; ref. 1) or, more recently, by transcription of short hairpin RNAs (shRNAs) from expression vectors and retroviruses. But the resistance of important cell types to transduction by these approaches, both in vitro and in vivo, has limited the use of RNAi. Here we describe a lentiviral system for delivery of shRNAs into cycling and non-cycling mammalian cells, stem cells, zygotes and their differentiated progeny. We show that lentivirus-delivered shRNAs are capable of specific, highly stable and functional silencing of gene expression in a variety of cell types and also in transgenic mice. Our lentiviral vectors should permit rapid and efficient analysis of gene function in primary human and animal cells and tissues and generation of animals that show reduced expression of specific genes. They may also provide new approaches for gene therapy
    corecore