7,224 research outputs found
Generalized Unitarity and Six-Dimensional Helicity
We combine the unitarity method with the six-dimensional helicity formalism
of Cheung and O'Connell to construct loop-level scattering amplitudes. As a
first example, we construct dimensionally regularized QCD one-loop four-point
amplitudes. As a nontrivial multiloop example, we confirm that the recently
constructed four-loop four-point amplitude of N=4 super-Yang-Mills theory,
including nonplanar contributions, is valid for dimensions less than or equal
to six. We comment on the connection of our approach to the recently discussed
Higgs infrared regulator and on dual conformal properties in six dimensions.Comment: 38 pages, 7 figures, typos correcte
Braggoriton--Excitation in Photonic Crystal Infiltrated with Polarizable Medium
Light propagation in a photonic crystal infiltrated with polarizable
molecules is considered. We demonstrate that the interplay between the spatial
dispersion caused by Bragg diffraction and polaritonic frequency dispersion
gives rise to novel propagating excitations, or braggoritons, with intragap
frequencies. We derive the braggoriton dispersion relation and show that it is
governed by two parameters, namely, the strength of light-matter interaction
and detuning between the Bragg frequency and that of the infiltrated molecules.
We also study defect-induced states when the photonic band gap is divided into
two subgaps by the braggoritonic branches and find that each defect creates two
intragap localized states inside each subgap.Comment: LaTeX, 8 pages, 5 figure
Acoustic Attenuation by Two-dimensional Arrays of Rigid Cylinders
In this Letter, we present a theoretical analysis of the acoustic
transmission through two-dimensional arrays of straight rigid cylinders placed
parallelly in the air. Both periodic and completely random arrangements of the
cylinders are considered. The results for the sound attenuation through the
periodic arrays are shown to be in a remarkable agreement with the reported
experimental data. As the arrangement of the cylinders is randomized, the
transmission is significantly reduced for a wider range of frequencies. For the
periodic arrays, the acoustic band structures are computed by the plane-wave
expansion method and are also shown to agree with previous results.Comment: 4 pages, 3 figure
QTL Analysis for Transgressive Resistance to Root-Knot Nematode in Interspecific Cotton (Gossypium spp.) Progeny Derived from Susceptible Parents
The southern root-knot nematode (RKN, Meloidogyne incognita) is a major soil-inhabiting plant parasite that causes significant yield losses in cotton (Gossypium spp.). Progeny from crosses between cotton genotypes susceptible to RKN produced segregants in subsequent populations which were highly resistant to this parasite. A recombinant inbred line (RIL) population of 138 lines developed from a cross between Upland cotton TM-1 (G. hirsutum L.) and Pima 3–79 (G. barbadense L.), both susceptible to RKN, was used to identify quantitative trait loci (QTLs) determining responses to RKN in greenhouse infection assays with simple sequence repeat (SSR) markers. Compared to both parents, 53.6% and 52.1% of RILs showed less (P<0.05) root-galling index (GI) and had lower (P<0.05) nematode egg production (eggs per gram root, EGR). Highly resistant lines (transgressive segregants) were identified in this RIL population for GI and/or EGR in two greenhouse experiments. QTLs were identified using the single-marker analysis nonparametric mapping Kruskal-Wallis test. Four major QTLs located on chromosomes 3, 4, 11, and 17 were identified to account for 8.0 to 12.3% of the phenotypic variance (R2) in root-galling. Two major QTLs accounting for 9.7% and 10.6% of EGR variance were identified on chromosomes 14 and 23 (P<0.005), respectively. In addition, 19 putative QTLs (P<0.05) accounted for 4.5–7.7% of phenotypic variance (R2) in GI, and 15 QTLs accounted for 4.2–7.3% of phenotypic variance in EGR. In lines with alleles positive for resistance contributed by both parents in combinations of two to four QTLs, dramatic reductions of >50% in both GI and EGR were observed. The transgressive segregants with epistatic effects derived from susceptible parents indicate that high levels of nematode resistance in cotton may be attained by pyramiding positive alleles using a QTL mapping approach
LINKIN, a new transmembrane protein necessary for cell adhesion
In epithelial collective migration, leader and follower cells migrate while maintaining cell-cell adhesion and tissue polarity. We have identified a conserved protein and interactors required for maintaining cell adhesion during a simple collective migration in the developing C. elegans male gonad. LINKIN is a previously uncharacterized, transmembrane protein conserved throughout Metazoa. We identified seven atypical FG-GAP domains in the extracellular domain, which potentially folds into a β-propeller structure resembling the α-integrin ligand-binding domain. C. elegans LNKN-1 localizes to the plasma membrane of all gonadal cells, with apical and lateral bias. We identified the LINKIN interactors RUVBL1, RUVBL2, and α-tubulin by using SILAC mass spectrometry on human HEK 293T cells and testing candidates for lnkn-1-like function in C. elegans male gonad. We propose that LINKIN promotes adhesion between neighboring cells through its extracellular domain and regulates microtubule dynamics through RUVBL proteins at its intracellular domain
Photon Localization in Resonant Media
We report measurements of microwave transmission over the first five Mie
resonances of alumina spheres randomly positioned in a waveguide. Though
precipitous drops in transmission and sharp peaks in the photon transit time
are found near all resonances, measurements of transmission fluctuations show
that localization occurs only in a narrow frequency window above the first
resonance. There the drop in the photon density of states is found to be more
pronounced than the fall in the photon transit time, leading to a minimum in
the Thouless number.Comment: To appear in PRL; 5 pages, including 5 figure
Coherent Umklapp Scattering of Light from Disordered Photonic Crystals
A theoretical study of the coherent light scattering from disordered photonic
crystal is presented. In addition to the conventional enhancement of the
reflected light intensity into the backscattering direction, the so called
coherent backscattering (CBS), the periodic modulation of the dielectric
function in photonic crystals gives rise to a qualitatively new effect:
enhancement of the reflected light intensity in directions different from the
backscattering direction. These additional coherent scattering processes,
dubbed here {\em umklapp scattering} (CUS), result in peaks, which are most
pronounced when the incident light beam enters the sample at an angle close to
the the Bragg angle. Assuming that the dielectric function modulation is weak,
we study the shape of the CUS peaks for different relative lengths of the
modulation-induced Bragg attenuation compared to disorder-induced mean free
path. We show that when the Bragg length increases, then the CBS peak assumes
its conventional shape, whereas the CUS peak rapidly diminishes in amplitude.
We also study the suppression of the CUS peak upon the departure of the
incident beam from Bragg resonance: we found that the diminishing of the CUS
intensity is accompanied by substantial broadening. In addition, the peak
becomes asymmetric.Comment: LaTeX, 8 two-column pages, 6 figures include
Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays
This paper presents a theoretical analysis of the recently reported
observation of acoustic stop bands in two-dimensional scattering arrays
(Robertson and Rudy, J. Acoust. Soc. Am. {\bf 104}, 694, 1998). A
self-consistent wave scattering theory, incorporating all orders of multiple
scattering, is used to obtain the wave transmission. The band structures for
the regular arrays of cylinders are computed using the plane wave expansion
method. The theoretical results compare favorably with the experimental data.Comment: 18 pages, 4 page
- …