20 research outputs found

    Network Features of the Mammalian Circadian Clock

    Get PDF
    The mammalian circadian clock is a cell-autonomous system that drives oscillations in behavior and physiology in anticipation of daily environmental change. To assess the robustness of a human molecular clock, we systematically depleted known clock components and observed that circadian oscillations are maintained over a wide range of disruptions. We developed a novel strategy termed Gene Dosage Network Analysis (GDNA) in which small interfering RNA (siRNA)-induced dose-dependent changes in gene expression were used to build gene association networks consistent with known biochemical constraints. The use of multiple doses powered the analysis to uncover several novel network features of the circadian clock, including proportional responses and signal propagation through interacting genetic modules. We also observed several examples where a gene is up-regulated following knockdown of its paralog, suggesting the clock network utilizes active compensatory mechanisms rather than simple redundancy to confer robustness and maintain function. We propose that these network features act in concert as a genetic buffering system to maintain clock function in the face of genetic and environmental perturbation

    Performance of First Pacemaker to Use Smart Device App for Remote Monitoring

    Get PDF
    BACKGROUND: High adherence to remote monitoring (RM) in pacemaker (PM) patients improves outcomes; however, adherence remains suboptimal. Bluetooth low-energy (BLE) technology in newer-generation PMs enables communication directly with patient-owned smart devices using an app without a bedside console. OBJECTIVE: To evaluate the success rate of scheduled RM transmissions using the app compared to other RM methods. METHODS: The BlueSync Field Evaluation was a prospective, international cohort evaluation, measuring the success rate of scheduled RM transmissions using a BLE PM or cardiac resynchronization therapy PM coupled with the MyCareLink Heart app. App transmission success was compared to 3 historical β€œcontrol” groups from the Medtronic de-identified CareLink database: (1) PM patients with manual communication using a wand with a bedside console (PM manual transmission), (2) PM patients with wireless automatic communication with the bedside console (PM wireless); (3) defibrillator patients with similar automatic communication (defibrillator wireless). RESULTS: Among 245 patients enrolled (age 64.8Β±15.6 years, 58.4% men), 953 transmissions were scheduled through 12 months, of which 902 (94.6%) were successfully completed. In comparison, transmission success rates were 56.3% for PM manual transmission patients, 77.0% for PM wireless patients, and 87.1% for defibrillator wireless patients. Transmission success with the app was superior across matched cohorts based on age, sex, and device type (single vs dual vs triple chamber). CONCLUSION: The success rate of scheduled RM transmissions was higher among patients using the smart device app compared to patients using traditional RM using bedside consoles. This novel technology may improve patient engagement and adherence to RM

    Stem Cell Therapy: Pieces of the Puzzle

    Get PDF
    Acute ischemic injury and chronic cardiomyopathies can cause irreversible loss of cardiac tissue leading to heart failure. Cellular therapy offers a new paradigm for treatment of heart disease. Stem cell therapies in animal models show that transplantation of various cell preparations improves ventricular function after injury. The first clinical trials in patients produced some encouraging results, despite limited evidence for the long-term survival of transplanted cells. Ongoing research at the bench and the bedside aims to compare sources of donor cells, test methods of cell delivery, improve myocardial homing, bolster cell survival, and promote cardiomyocyte differentiation. This article reviews progress toward these goals
    corecore