824 research outputs found

    Doming Modes and Dynamics of Model Heme Compounds

    Get PDF
    Synchrotron far-IR spectroscopy and density-functional calculations are used to characterize the low-frequency dynamics of model heme FeCO compounds. The “doming” vibrational mode in which the iron atom moves out of the porphyrin plane while the periphery of this ring moves in the opposite direction determines the reactivity of oxygen with this type of molecule in biological systems. Calculations of frequencies and absorption intensities and the measured pressure dependence of vibrational modes in the model compounds are used to identify the doming and related normal modes

    Structure and Properties of Dense Silica Glass

    Get PDF
    The O K-edge x-ray Raman scattering (XRS), Brillouin scattering and diffraction studies on silica glass at high pressure have been elucidated in a unified manner using model structures obtained from First-Principles molecular dynamics calculations. This study provides a comprehensive understanding on how the structure is related to the physical and electronic properties. The origin of the "two peak" pattern in the XRS is found to be the result of increased packing of oxygen near the Si and is not a specific sign for sixfold coordination. The compression mechanism involving the presence of 5- and 6-fold coordinated silicon is confirmed. A slight increase in the silicon-oxygen coordination higher than six was found to accompany the increase in the acoustic wave velocity near 140 GPa

    Atomically dispersed quintuple nitrogen and oxygen co-coordinated zirconium on graphene-type substrate for highly efficient oxygen reduction reaction.

    Get PDF
    A cost-effective and long stability catalyst with decent electrochemical activity would play a crucial role in accelerating applications of metal-air batteries. Here, we report quintuple nitrogen and oxygen co-coordinated Zr sites on graphene (Zr-N/O-C) by using a ball-milling, solid-solution-assisted pyrolysis method. The as-prepared Zr-N/O-C catalyst with 2.93 wt % Zr shows a half-wave potential of 0.910 V, an onset potential of 1.000 V in 0.1 M KOH, impressive durability (95.1% remains after 16,000 s), and long-term stability (5 mV loss over 10,000 cycles). Zn-air batteries with the Zr-N/O-C electrode exhibit a maximum power density of 217.9 mW cm−2 and a high cycling life of over 1,000 h, exceeding the counterpart equipped with a Pt/C benchmark. Theoretical simulations demonstrate that nitrogen and oxygen dual-ligand confinement effectively tunes the d-band center and balances key intermediates binding energy of intrinsic quintuple coordination Zr sites
    corecore